Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018

If you could hover far above the southeast Atlantic Ocean, particularly during the months of April through June, on many days you will likely witness a sharp line of clearing moving east-to-west and eroding large regions of low cloud typically present over the region.

Although clouds grow and dissipate all of the time, scientists think that these low-lying clouds off the coast of subtropical Africa are being disrupted not simply by wind from the continent, but rather by a wave mechanism.


Example of a westward-moving cloudiness transition in the southeast Atlantic off the coast of Africa. (left) regional view and (right)showing detail of the sharp edge of the transition boundary.

Credit: Satellite data courtesy of NASA Worldview.

Usage Restrictions: Include credit to NASA Worldview; please do not edit caption language

For climate models, the way the clouds are being disrupted could make a big difference. The observations appear today in the journal Science.

"Low clouds are important because they help cool the climate," said David Mechem, University of Kansas associate professor of geography and atmospheric science and one of the paper's authors. "These are huge sheets of white clouds that reflect sunlight back to space. When we try to do climate predictions for 50 years in the future, it's important to get these clouds right."

Mechem worked with lead researcher Sandra Yuter and colleagues from North Carolina State University. The scientists worked together during the past few years, most recently to understand why the southeast Atlantic was averaging a bit less cloud cover than the other major regions of marine low clouds. Because of the relative lack of observations over the southeast Atlantic and African coast, their analysis was mostly based on satellite data.

"This is what we stumbled into -- dramatic clearing events," Mechem said. "We fixated on this because of its potential importance for climate models to represent this feature."

The scientists set out to understand how these dramatic clearing events were happening. Winds from subtropical Africa do not simply blow the clouds westward across the ocean.

"What we think is going on is that the air flow from land to ocean overnight is triggering atmospheric waves that then move west," he said.

The wind flow offshore off the southwest African coast is a common weather phenomenon Floridians or anyone who has visited the Sunshine State's coasts knows, Mechem said. During the day, the land heats faster than the ocean, causing a breeze blowing off the ocean toward land. At night, the land cools, and the wind blows back toward the ocean.

Mechem and his colleagues describe the wave movement as what it's like to be floating on a raft in the ocean far away from the shore, where you're bobbing up and down as the waves roll by.

"Air comes off the continent, interacts with the air over the ocean, and excites these waves, which move through the cloud field, promoting mixing and enhanced cloud evaporation," he said.

What makes the findings released in Science today so important, Mechem said, is that it offers some insight into the behavior of these climatologically important, low-lying marine clouds over the southeast Atlantic that have proven challenging to understand.

"We have to know how they will respond to a warming climate," he said. "Will you have more or fewer? This itself is just a natural event, but we'll be trying to go back and see if there's any trend in the number of these events."

###

The work is supported by the National Science Foundation and the U.S. Department of Energy.

Media Contact

Erinn Barcomb-Peterson
ebp@ku.edu
785-864-8858

 @KUNews

http://www.news.ku.edu 

Erinn Barcomb-Peterson | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>