Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward a Better Understanding of Earthquakes

05.07.2012
The earth is shaken daily by strong earthquakes recorded by a number of seismic stations worldwide. Tectonic tremor, however, is a new type of seismic signal that seismologist started studying only within the last few years. Tremor is less hazardous than earthquakes and occurs at greater depth.
The link between tremor and earthquakes may provide clues about the more destructive earthquakes that occur at shallower depths. Geophysicists of Karlsruhe Institute of Technology (KIT) collected seismic data of tectonic tremor in California. These data are now being evaluated in order to better understand this new seismic phenomenon.

About a decade ago, researchers discovered a previously unknown seismic signal, now referred to as tectonic tremor. Contrary to earthquakes, tectonic tremor causes relatively weak ground shaking. While tremor may last longer than earthquakes, it does not cause any direct danger. “Both earthquakes and tremor have the same cause. They result from the relative movement on fault surfaces, a result of the motion of the tectonic plates,” explains seismologist Dr. Rebecca Harrington, who heads a research group at KIT. “While earthquakes at our research site in California typically occur at depths of up to 15 km below the surface, tectonic tremor signals are generated at depths ranging from approximately 15 to 35 km.”

Tectonic tremor was first detected a decade ago in subduction zones in Japan and in the Pacific Northwest in North America. Since then, seismologists have discovered that tremor occurs in many other places, including the San Andreas fault in California. The San Andreas fault marks the boundary where the Pacific Plate and the North American plate drift past each other, generating many earthquakes in the process. KIT researchers have collected new seismic data recording tremor closer to where it occurs than the seismic stations currently installed near Cholame. In mid-2010, KIT researchers, together with scientists of the University of California, Riverside, and the US Geological Survey, Pasadena, installed 13 seismic stations near Cholame, located approximately halfway between San Francisco and Los Angeles. Each seismic station was equipped with a broadband seismometer in a thermally insulated hole in the ground, a small computer, and a solar panel for power. Broadband seismometers are extremely sensitive to small ground motions, are therefore ideal for detecting tremor and small earthquakes. The data recorded over a period of 14 months are presently being analyzed at KIT.

Tectonic tremor signals have a unique character that differs from earthquakes, making them more difficult to detect using automated techniques. In order to address the detection problem, the KIT researchers first developed a new algorithm for the automatic isolation of tectonic tremor. Using their new technique, they found over 2600 tremor events that are now being studied in detail. “In addition to detecting tremor, we will determine their size or magnitude of the individual events. In order to do so, each of the tremor events must be precisely located,” says Rebecca Harrington. Additionally, KIT geophysicists compare the tremor and earthquake recordings in California with earthquake recordings at Mount St. Helens volcano, located in the Cascadia subduction zone, located to north of California, in the US state of Washington. A volcano eruption from 2004-2008 produced a series of earthquakes on newly formed faults, where the scientists of the US Geological Survey collect data that are also made available to Rebecca Harrington.

Seismology is still a long way from being able to predict earthquakes. However, seismologists can better estimate the danger posed by earthquakes by understanding what happens on a fault during a seismic event. According to Rebecca Harrington, research of tectonic tremor may play an important role understanding fault behavior. “We understand very little about what happens on a fault when it ruptures. The tectonic tremor generated on the deep part of a fault may provide clues about the behavior on the more shallow parts of a fault where more damaging earthquakes occur.”

The KIT Climate and Environment Center develops strategies and technologies to secure the natural bases of life. For this purpose, 660 employees of 32 institutes produce fundamental and application-oriented knowledge relating to climate and environmental change. It is not only aimed at eliminating the causes of environmental problems, but increasingly at adapting to changed conditions.

Simon Scheuerle | alfa
Further information:
http://www.kit.edu
http://www.kit.edu/visit/pi_2012_11195.php

More articles from Earth Sciences:

nachricht Satellite data show severity of drought summers in 2018 and 2019
13.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht NASA analyzes Tropical Cyclone Cristina's water vapor concentration
09.07.2020 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>