Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny tyrannosaur

21.09.2009
Small fossil described in Science predates the T. rex

When you think of Tyrannosaurus rex, a small set of striking physical traits comes to mind: an oversized skull with powerful jaws, tiny forearms, and the muscular hind legs of a runner.

But, researchers have just unearthed a much smaller tyrannosauroid in China, no more than three meters long, that displays all the same features – and it predates the T. rex by tens of millions of years.

This finding, published online by the journal Science at the Science Express website on September 17, means that such specialized physical features did not evolve as the prehistoric predators grew in size. Instead, they were present for feeding efficiency at all sizes of the dinosaurs during their reign in the Cretaceous Period.

Paul Sereno from the University of Chicago and National Geographic explorer-in-residence, along with colleagues, studied the new, small-bodied fossil, naming it Raptorex kriegsteini, and estimated that it was a young adult when it died. They examined the skull, teeth, nose, spine, shoulders, forearms, pelvis, and hind legs of the new fossil, comparing the features to larger evolutionary versions of tyrannosauroid dinosaurs.

"First, we used the best mechanical preparation of the specimen possible, which entails the finest needles and air abrasives under a microscope," Sereno said in an email interview. "Then we made molds and casts of the cranial bones, assembled a cast skull, and sent that skull through a CT scanner at the University of Chicago hospital to get the snout cross-section… We used silicone on the skull roof to cast the forebrain of R. kriegsteini… Finally, I made a thin-section from one femur, or thigh bone, for microscopic examination, and determined that the individual had lived to be five or six years old."

The researchers conclude that the "predatory skeletal design" of R. kriegsteini was simply scaled up with little modification in its carnivorous descendants, whose body masses eventually grew 90 times greater.

Sereno and his colleagues also use this new fossil to propose and describe three major morphological stages in the evolutionary history of tyrannosauroid dinosaurs.

Dr. Sereno's coauthors are Lin Tan of the Long Hao Institute of Geology and Paleontology in Hohhot, PRC; Stephen Brusatte of the American Museum of Natural History in New York, NY; Henry Kriegstein of Higham, MA; Xijin Zhao of the Chinese Academy of Sciences in Beijing, PRC; and Karen Cloward of Western Paleontological Laboratories, Inc. in Lehi, UT. The paper is entitled, "Tyrannosaurid Skeletal Design First Evolved at Small Body Size."

This research was funded by the David and Lucile Packard Foundation and the National Geographic Society.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal Science (www.sciencemag.org). AAAS was founded in 1848, and serves 262 affiliated societies and academies of science, reaching 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The nonprofit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Kathleen Wren | EurekAlert!
Further information:
http://www.aaas.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>