Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new parameterization of canopy radiative transfer for land surface radiation models

07.04.2017

Among the physical processes of land surfaces, canopy radiative transfer is especially important. It plays a key role in controlling land-atmosphere flux exchanges by determining surface albedo and transpiration.

However, the canopy varies geographically from that of dense tropical forests to the shrublands of arid desert lands, and temporally from the vibrancy of spring to the gloominess of winter. Uncertainties are abound in the processes of radiative transfer parameterization.


This is an illustration of canopy radiative transfer.

Credit: Feng Zhang

Dr Feng Zhang and his collaborators propose a new parameterization for the canopy phase function, which is based on the leaf normal distribution and leaf reflection/transmission, and examine the accuracy in reflection and transmission of the canopy through comparison with the benchmark result of SOSA. The findings are published in Advances in Atmospheric Sciences (Zhang et al., 2017).

"The new method," says Dr. Zhang, "when based on Eddington approximation, can substantially improve the accuracy compared to the previously preferred hemispheric constant method, under both isotropic and anisotropic conditions. Therefore, the canopy albedo can be evaluated more accurately by the analytical solution of non-zero soil background reflection."

Moreover, their investigation also reveals that there is a relationship between the direct radiation and the diffuse radiation of the canopy, which have been treated separately in previous studies. It is concluded that the new parameterization is well suited for applications of land surface radiation modeling.

Zheng Lin | EurekAlert!

Further reports about: Atmospheric Atmospheric Sciences canopy forests shrublands tropical forests

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>