Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 3D viewer for improved digital geoscience mapping

20.09.2016

Over the years, techniques and equipment for digital mapping have revolutionized the way geoscience field studies are performed.

Now a unique new software for virtual model interpretation and visualization, is to be presented at the 2nd Virtual Geoscience Conference (VGC 2016) in Bergen, Norway.


Simon Buckley at Uni Research CIPR in Bergen, Norway. (Photo: Andreas R. Graven)

The conference will take place on the 21-23 of September, and represents a multidisciplinary forum for geoscience researchers, geomatics and related disciplines to share their latest developments and applications. 

Simon Buckley and colleagues at Uni Research CIPR are not just hosting the conference in Bergen, but will present their latest contribution to the field:

High performance 3D viewer
A software called LIME, which is a high performance 3D viewer that can be highly useful for geoscientists returning to their office after fieldwork.

The software allows them to explore their 3D datasets and perform measurements, analysis and advanced visualization of different data types. The software is developed by the Virtual Outcrop Geology Group (VOG), a collaboration between Uni Research CIPR in Bergen and the University of Aberdeen, UK. 

– The group has been at forefront of digital outcrop geology for over ten years, pioneering many of the developments in data acquisition, processing, and distribution. To facilitate the interpretation, visualisation and communication of 3D photorealistic models, we have developed LIME for over five years, Buckley says.

On the researcher’s own laptop
One of the unique things about LIME is that it can be downloaded and used on the researcher’s own laptop, and can handle very large 3D datasets with high performance.

– It allows the users to integrate 3D models from processing software, and do analysis and interpretation, to put together lots of types of data collected in fieldwork, Buckley explains. 

Digital mapping technology for many geoscience applications is based on a combination of 3D mapping methods: laser scanning and photogrammetry – 3D modelling from images – from the ground, from boats, and from helicopters for very large mountainsides.

And more recently: from unmanned aerial vehicles, or drones.

– In addition to this we focus on fusing new imaging techniques for mapping surface properties. An example is hyperspectral imaging, an infrared imaging method that allows thesurface material content of an outcrop, building or drill core to be mapped in detail and remotely. This is what I call phase one of the digital geosciences mapping revolution, which has now become relatively mature, Buckley says.

Integration of multiple techniques
In phase two, collection of data from digital mapping is becoming ubiquitous, but researchers around the world who are new to using this type of data can still struggle with learning curves, making it difficult for the, to analyze their models, Buckley at Uni Research CIPR underscores. This is the basis for LIME:

– Here is our advantage, as we work on the integration of multiple techniques and data types, interpretation software like LIME, databases for storing, accessing and manipulating the data, and mobile devices – viewing and interpretation on tablets, in the field, Buckley says.

The models collected using digital mapping techniques, combined with the LIME software, enables geologists to study exposed outcrops and rock formations which are otherwise very difficult to access.

– Looking at details of the outcrop and dropping in new sorts of data all of a sudden becomes easier, Buckley says. Examples are integration of interpretation panels, geophysical data or a new sedimentary log, which looks at different rock types.

Key features
One of the key features of the high performance 3D viewer, is that you can integrate images and project them on to the 3D models.

– Geoscientists are therefore able to integrate different types of field data, making it a powerful tool, Buckley explains:

– In the end, we can make a very nice visual representation to show the analysis and the project datasets, which is very useful for geoscientists who want to present their results, for example to their collaborating partners and sponsors, to the public, or at conferences, Buckley says.

– Thanks to the technology and application convergence, the adoption of digital mapping techniques is having a major impact in many areas of the geosciences and beyond, Buckley says.

http://uni.no/en/news/2016/9/20/new-3d-viewer-improved-digital-geoscience-mapping/

For further information, please contact:

Simon Buckley

Uni Research

+47 9025 4928

simon.buckley@uni.no

Simon Buckley | AlphaGalileo

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>