Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fragile balance: Wind conditions influence water circulation and CO2 concentrations in Southern Ocean, a study shows

02.01.2020

The sea encircling Antarctica acts as a huge mixer for water from all the ocean basins – and this circulating pattern influences the exchange of carbon dioxide (CO2) between the ocean and the atmosphere. A study by an international team of researchers, led by Dr. Torben Struve from the University of Oldenburg’s Institute for Chemistry and Biology of the Marine Environment (ICBM), has now established that this complex equilibrium of water masses reacts highly sensitively to wind conditions over the Southern Ocean. It is published in the scientific journal Proceedings of the National Academy of Sciences.

The study used measurements on fossil coral skeletons to reveal that significant changes in deep-water circulation occurred in the Drake Passage, a narrow strait between Antarctica and South America, around six to seven thousand years ago.


Fishing for coral samples at high seas in the Drake Passage.

Photo credit: Rhian Waller

The scientists see indications that these changes also influenced CO2 levels in the atmosphere – and suggest that future climate change could lead to increased release of CO2 from the deep waters of the Southern Ocean into the atmosphere.

“The Southern Ocean connects all the world’s oceans. It’s one of the few places on Earth where water from great depths comes to the surface and at the same time surface water sinks to the depths,” explained lead author Struve. The marine region around Antarctica is therefore critical for the global conveyor belt of ocean currents, which distributes heat, nutrients, salt and CO2 over great distances.

However, until now, it had not been clear whether the current flowing in the Southern Ocean had changed significantly since the last ice age ended about 12,000 years ago. Previous studies by climate researchers had shown that there have been several shifts in the strong westerly winds blowing around Antarctica during the current interglacial period.

These winds drive the Antarctic Circumpolar Current, a cold ocean current that extends from the surface to the ocean floor and which connects the Atlantic, Indian and Pacific Oceans.

Importantly, the winds also stimulate the upwelling of deep ocean waters towards the ocean surface. The study set out to determine how the currents in the Southern Ocean reacted to these changes in the atmosphere.

To answer this question, Struve and his colleagues from Imperial College London, University College London and the University of Edinburgh, analysed fossil cold-water corals from the Drake Passage, some of which were several thousand years old. The corals were collected from different water depths at three locations in the Drake Passage during two expeditions with the US research vessel Nathaniel B. Palmer.

“This area is notorious for its poor weather conditions – simply collecting the samples was a challenge,” Struve explained.

The cold-water corals store certain trace elements, such as neodymium, in their calcareous skeletons, and therefore record a chemical fingerprint of the water they grew in. Analysis of the neodymium fingerprints in the coral samples showed that there was an abrupt change in the chemical composition of the water about 7,000 years ago, which lasted for about 1,000 years.

On the basis of several findings, the team concluded that increased amounts of CO2-rich deep water from the Pacific Ocean penetrated the Drake Passage at that time, presumably driven by a northwards shift of the Southern Hemisphere westerly winds. “This was a surprising result for us. We hadn’t expected the Southern Ocean to react so sensitively during an interglacial period,” said Struve.

“This study highlights the invaluable contribution of cold water coral fossils to understanding past climate change. They provide unique records of the chemical composition of seawater – often in regions of the ocean where other types of archives are scarce,“ co-author Dr. Kirsty Crocket of the University of Edinburgh underlined.

The study also sheds light on a series of other climate changes that occurred around the same time. In particular, atmospheric CO2 levels, which had dropped slightly in the preceding 2,000 years, began to rise once more.

Struve and his colleagues suspect that a key source for this phenomenon was an increase in the amount of CO2-rich Pacific deep water in the Southern Ocean.

“This is important because when deep waters upwell to the surface of the Southern Ocean, some of the stored CO2 is able to escape to the atmosphere”, explained co-author Dr. David Wilson. And then, as the winds shifted southwards once more, this upwelling increased and larger amounts of CO2 were released into the atmosphere.

It is not yet clear how rising global temperatures will affect the ocean currents encircling Antarctica. However, current climate scenarios indicate that the Southern Hemisphere westerly winds will move further south towards Antarctica. This scenario could lead to stronger mixing of water masses in the Southern Ocean and more upwelling – which the team of researchers suspects could in turn result in larger amounts of CO2 being released from the deep ocean.

Wissenschaftliche Ansprechpartner:

Dr. Torben Struve, Tel.: 0441/798-3359, E-Mail: t.struve@icbm.de

Originalpublikation:

T. Struve, D. J. Wilson, T. van de Flierdt, N. Pratt, K. C. Crocket: „Middle Holocene expansion of Pacific Deep Water into the Southern Ocean“ PNAS 2019 https://doi.org/10.1073/pnas.1908138117

Weitere Informationen:

https://uol.de/en/icbm/marine-isotope-geochemistry research group for Marine Isotope Geochemistry

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>