A cooler Pacific may have severely affected medieval Europe, North America

In the time before Columbus sailed the ocean blue, a cooler central Pacific Ocean has been connected with drought conditions in Europe and North America that may be responsible for famines and the disappearance of cliff dwelling people in the American West.

A new study from the University of Miami (UM) has found a connection between La Niña-like sea surface temperatures in the central Pacific and droughts in western Europe and in what later became the southwestern United States and Mexico, as published in a recent issue of Geophysical Research Letters.

“We've known for some time the connection between El Niño and La Niña and the weather conditions in North America and Europe,” said Robert Burgman, a climate scientist at UM's Rosenstiel School of Marine & Atmospheric Science. “La Niña-like conditions, such as those we found, can cause persistent drought, and as we know warm conditions cause increased precipitation.”

Using cores of fossil coral from the Palmyra Atoll in the central Pacific Ocean, Burgman and a team used reconstructed sea surface temperatures from the period 1320 to 1462 to simulate medieval climate conditions with a state-of-the-art climate model. When the differences between medieval and modern climate simulations were compared with paleo-records like tree-rings and sediment cores from around the globe, the authors found remarkable agreement.

During the 142-year study period, the sea surface temperature dropped only one-tenth of one degree, but it was enough to cause arid conditions in North America and Europe.

The Anastazi people—who lived in dramatic cliff dwellings near what later became known as the “Four Corners” area at the intersection of the state of Utah, Colorado, New Mexico, and Arizona—left their settlements at Mesa Verde and other locations some 600 years ago without explanation. A prolonged drought is thought to be one of the contributing factors to their departure.

In Europe, the study period was preceded by three years of torrential rains, which led to the Great Famine from 1315 to 1320, and marked the transition from the Medieval Warm Period to the Little Ice Age, which began in the mid 1500s. During that time, extreme weather conditions were thought to be responsible for continued localized crop failures and famines throughout Europe during the remainder of the 14th Century.

“The marriage of complex climate models with paleo-records of sea surface temperature and other climate variables provide valuable insight to climate scientists who wish to understand climate variability and change before the instrumental record,” said Burgman.

Warning that the Palmyra Atoll data only represents one data point, Burgman emphasized that he would like to test his thesis with data from other oceans. “If we can fill in the gaps with data from corals and other records from the Atlantic, Pacific, and Indian oceans, we'll have a better idea of what has happened to the global climate over time,” he added.

In the study, Burgman and his colleagues used the reconstructed tropical Pacific sea surface temperatures to create a 16-member ensemble of atmospheric general circulation model (ACGM) simulations, coupled with a one-layer ocean model outside of the tropical Pacific. When the ACGM simulations were compared with the modern climate simulations, they were able to reproduce many aspects of the medieval climate found in observational records for much of the Western Hemisphere, northern Eurasia, and the northern tropics. These results suggest that many features of global medieval hydroclimate changes can be explained by tropical Pacific sea surface temperatures.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Media Contact

Barbra Gonzalez EurekAlert!

More Information:

http://www.rsmas.miami.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors