Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

558 million-year-old fat reveals earliest known animal

21.09.2018

An international team of scientists has discovered molecules of fat in an ancient fossil to reveal the earliest confirmed animal in the geological record that lived on Earth 558 million years ago. The team was led by The Australian National University and included scientists from the German Max Planck Institute for Biogeochemistry and University of Bremen as well as the Russian Academy of Science. Their recent results are published in the journal Science.

The strange creature called Dickinsonia, which grew up to 1.4 metres in length and was oval shaped with rib-like segments running along its body, was part of the Ediacara Biota that lived on Earth 20 million years prior to the ‘Cambrian explosion’ of modern animal life. PhD scholar Ilya Bobrovskiy from The Australian National University (ANU) discovered a Dickinsonia fossil so well preserved in a remote area near the White Sea in the northwest of Russia that the tissue still contained fossil remnants of cholesterol, a type of fat that is the hallmark of animal life.


Organically preserved Dickinsonia fossil from the White Sea area of Russia

Ilya Bobrovskiy, ANU

“The fossil fat molecules that we’ve found prove that animals were large and abundant 558 million years ago, millions of years earlier than previously thought,” said Associate Professor Jochen Brocks, lead senior researcher from the ANU Research School of Earth Sciences.

“Scientists have been fighting for more than 75 years over what Dickinsonia and other bizarre fossils of the Edicaran Biota were: giant single-celled amoeba, lichen, failed experiments of evolution or the earliest animals on Earth. The fossil fat now confirms Dickinsonia as the oldest known fossil belonging to the animal kingdom, solving a decades-old mystery that has been the Holy Grail of palaeontology.”

By analysing fat molecules the team developed a new approach to study Dickinsonia fossils, which hold the key between the old world dominated by bacteria and the world of large animals that emerged 540 million years ago during the ‘Cambrian explosion’. In that era complex animals and other macroscopic organisms – such as molluscs, worms, arthropods and sponges – began to dominate the fossil record.

This is where Christian Hallmann and his team, experts in studies of fossil steroid molecules from the German Max Planck Institute for Biogeochemistry and the University of Bremen came into play. “We had to exclude that Dickinsonia could be protists, single-celled eukaryotes of the lowest organization level, a theory previously followed by others”, postdoctoral researcher Benjamin Nettersheim says.

To this end they systematically studied the lipid composition of various rhizarian protists and artificially aged the biomass of these organisms to make them comparable to the fossils. “The pattern is completely different” says Hallmann, which clearly excludes this old theory.

“The problem that we had to overcome was finding Dickinsonia fossils that retained some organic matter,” said Mr Bobrovskiy from the ANU Research School of Earth Sciences. Most rocks containing these fossils such as those from the Ediacara Hills in Australia have endured a lot of heat, a lot of pressure, and then they were weathered after that.

“Our fossils were located in the middle of cliffs of the White Sea that are 60 to 100 metres high and could only be reached by abseiling”. The unique preservation of Ediacara fossils at this remote locality may hold even far more clues towards the nature of our earliest animal ancestors.

Wissenschaftliche Ansprechpartner:

Dr. Christian Hallmann
Max Planck Research Group Leader

Tel: +49 (0)421 218 65 820
challmann[at]bgc-jena.mpg.de

Originalpublikation:

Ilya Bobrovskiy, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, Jochen J. Brocks (2018)
Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals
Science, Sept 21, published online

Weitere Informationen:

https://www.marum.de/wir-ueber-uns/AG-Hallmann.html Website of the Group

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht A Volcanic Binge And Its Frosty Hangover
21.02.2019 | Universität Heidelberg

nachricht Researchers get to the bottom of fairy circles
21.02.2019 | Georg-August-Universität Göttingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>