Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

558 million-year-old fat reveals earliest known animal

21.09.2018

An international team of scientists has discovered molecules of fat in an ancient fossil to reveal the earliest confirmed animal in the geological record that lived on Earth 558 million years ago. The team was led by The Australian National University and included scientists from the German Max Planck Institute for Biogeochemistry and University of Bremen as well as the Russian Academy of Science. Their recent results are published in the journal Science.

The strange creature called Dickinsonia, which grew up to 1.4 metres in length and was oval shaped with rib-like segments running along its body, was part of the Ediacara Biota that lived on Earth 20 million years prior to the ‘Cambrian explosion’ of modern animal life. PhD scholar Ilya Bobrovskiy from The Australian National University (ANU) discovered a Dickinsonia fossil so well preserved in a remote area near the White Sea in the northwest of Russia that the tissue still contained fossil remnants of cholesterol, a type of fat that is the hallmark of animal life.


Organically preserved Dickinsonia fossil from the White Sea area of Russia

Ilya Bobrovskiy, ANU

“The fossil fat molecules that we’ve found prove that animals were large and abundant 558 million years ago, millions of years earlier than previously thought,” said Associate Professor Jochen Brocks, lead senior researcher from the ANU Research School of Earth Sciences.

“Scientists have been fighting for more than 75 years over what Dickinsonia and other bizarre fossils of the Edicaran Biota were: giant single-celled amoeba, lichen, failed experiments of evolution or the earliest animals on Earth. The fossil fat now confirms Dickinsonia as the oldest known fossil belonging to the animal kingdom, solving a decades-old mystery that has been the Holy Grail of palaeontology.”

By analysing fat molecules the team developed a new approach to study Dickinsonia fossils, which hold the key between the old world dominated by bacteria and the world of large animals that emerged 540 million years ago during the ‘Cambrian explosion’. In that era complex animals and other macroscopic organisms – such as molluscs, worms, arthropods and sponges – began to dominate the fossil record.

This is where Christian Hallmann and his team, experts in studies of fossil steroid molecules from the German Max Planck Institute for Biogeochemistry and the University of Bremen came into play. “We had to exclude that Dickinsonia could be protists, single-celled eukaryotes of the lowest organization level, a theory previously followed by others”, postdoctoral researcher Benjamin Nettersheim says.

To this end they systematically studied the lipid composition of various rhizarian protists and artificially aged the biomass of these organisms to make them comparable to the fossils. “The pattern is completely different” says Hallmann, which clearly excludes this old theory.

“The problem that we had to overcome was finding Dickinsonia fossils that retained some organic matter,” said Mr Bobrovskiy from the ANU Research School of Earth Sciences. Most rocks containing these fossils such as those from the Ediacara Hills in Australia have endured a lot of heat, a lot of pressure, and then they were weathered after that.

“Our fossils were located in the middle of cliffs of the White Sea that are 60 to 100 metres high and could only be reached by abseiling”. The unique preservation of Ediacara fossils at this remote locality may hold even far more clues towards the nature of our earliest animal ancestors.

Wissenschaftliche Ansprechpartner:

Dr. Christian Hallmann
Max Planck Research Group Leader

Tel: +49 (0)421 218 65 820
challmann[at]bgc-jena.mpg.de

Originalpublikation:

Ilya Bobrovskiy, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, Jochen J. Brocks (2018)
Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals
Science, Sept 21, published online

Weitere Informationen:

https://www.marum.de/wir-ueber-uns/AG-Hallmann.html Website of the Group

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht Massive organism is crashing on our watch
18.10.2018 | S.J. & Jessie E. Quinney College of Natural Resources, Utah State University

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>