Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50-million-year-old clam shells provide indications of future of El Niño phenomenon

14.09.2011
Earth warming will presumably not lead to a permanent El Niño state in the South Pacific Ocean.

This is the conclusion drawn by an international team of researchers after it investigated 50-million-year-old clam shells and wood from the Antarctic. The growth rings of these fossils indicate that there was also a climate rhythm over the South Pacific during the last prolonged interglacial phase of the Earth’s history resembling the present-day interplay of El Niño and La Niña.

Floods in Peru, drought in Australia: When the South Pacific Ocean warms up at an above-average rate every three to six years and “El Niño” influences weather patterns, the world in the coastal countries affected is turned completely around. Fishermen come back with empty nets, crops are lost, food prices increase and nearly everyone hopes the warm phase of the climate phenomenon “El Niño Southern Oscillation (ENSO)” will abate as quickly as possible.

The ENSO phenomenon still changes regularly from its cold phase (La Niña) to the warm phase (El Niño) and back. But what will things be like in the future? How will the worldwide temperature rise influence ENSO? Will there perhaps be a permanent El Niño? To answer this important question, scientists are looking at the past – particularly at the Eocene period 60 to 37 million years ago. “The Eocene is considered to be the last real prolonged warm period. At that time the Antarctic was ice-free and green. Even trees grew and we know about the water temperature of the ocean that it fluctuated between 10 and 16 degrees Celsius over the year,” says Thomas Brey, biologist at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association.

He and colleagues from the USA and Germany have now succeeded for the first time in verifying a rhythm according to the pattern of the ENSO phenomenon in the growth patterns of fossil clams and wood from the early Eocene. Their results will soon appear in the journal Geophysical Research Letter and are already available on its website in a text entitled “El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica”.

Brey and his colleagues investigated shells of the bivalve species Cucullaea Raea and Eurhomalea antarctica that are 50 million years old as well as a piece of wood from Seymour Island in the Antarctic. “Like trees, clams form growth rings. We measured their width and examined them for growth rhythms,” states Brey.

Whether clams grow depends on the availability of food and heat. “That means the change from “good” and “poor” environmental conditions at that time is still reflected in the width of the growth rings we find today. And as we were able to show, this change took place in the same three to six year rhythm we are familiar with in connection with ENSO today,” says Brey.

The shells are a real piece of luck for him. “To verify ENSO, we need climate archives that cover the largest possible period year by year. Back then clams lived for up to 100 years. This is a good basis for our work.”

To examine the significance of the growth rings of clams and wood, the researchers compared their measurement results with current ENSO data as well as with the ENSO-like fluctuations produced by a climate model of the Eocene. The result: all patterns correspond. “Our results are a strong indication that an ENSO phenomenon which fluctuated between warm and cold phases also existed in the warm Eocene,” says Brey.

Good news! Should the scientists be right, these findings mean for the future that in all likelihood the worldwide temperature rise will not disrupt the ENSO climate rhythm above the South Pacific Ocean.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Sina Löschke | idw
Further information:
http://www.awi.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>