Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The last 3 million years at a snail's pace: a tiny trapdoor opens a new way to date the past

05.08.2011
Scientists at the University of York, using an 'amino acid time capsule', have led the largest ever programme to date the British Quaternary period, stretching back nearly three million years.

It is the first widespread application of refinements of the 40-year-old technique of amino acid geochronology. The refined method, developed at York’s BioArCh laboratories, measures the breakdown of a closed system of protein in fossil snail shells, and provides a method of dating archaeological and geological sites.

Britain has an unparalleled studied record of fossil-rich terrestrial sediments from the Quaternary, a period that includes relatively long glacial episodes – known as the Ice Age – interspersed with shorter ‘interglacial’ periods where temperatures may have exceeded present day values.

However, too often the interglacial deposits have proved difficult to link to global climatic signals because they are just small isolated exposures, often revealed by quarrying.

Using the new method, known as amino acid racemization, it will be possible to link climatic records from deep sea sediments and ice cores with the responses of plants and animals, including humans, to climate change over the last three million years. The research is published in the latest issue of Nature.

The new method was developed by Dr Kirsty Penkman, of the Department of Chemistry, alongside Professor Matthew Collins of the Department of Archaeology at York, and measures the the extent of protein degradation in calcareous fossils such as mollusc shells. It is based on the analysis of intra-crystalline amino acids – the building blocks of protein – preserved in the fossil opercula (the little ‘trapdoor’ the snail uses to shut itself away inside its shell) of the freshwater gastropod Bithynia. It provides the first single method that is able to accurately date such a wide range of sites over this time period.

Dr Penkman said: "The amino acids are securely preserved within calcium carbonate crystals of the opercula. This crystal cage protects the protein from external environmental factors, so the extent of internal protein degradation allows us to identify the age of the samples. In essence, they are a protein time capsule.

“This framework can be used to tell us in greater detail than ever before how plants and animals reacted to glacial and interglacial periods, and has helped us establish the patterns of human occupation of Britain, supporting the view that these islands were deserted in the Last Interglacial period.”

In a close collaboration with palaeontologist Dr Richard Preece in the Department of Zoology at the University of Cambridge, the study examined a total of 470 fossil remains from 71 sites in the UK and three on continental Europe. The method proved highly reliable with more than 98 per cent of samples yielding useful results, resulting in the largest ever geochronological programme of the British Pleistocene.

Professor Collins said: "When we started this work 11 years ago, we thought it was going to be relatively straightforward to identify a good material for dating, but the first 3 years of research on shells showed that the stability of the mineral itself was vital. The tiny trapdoor of a snail proved to be the key to success."

Dr Preece added: “Luckily, fossil opercula are common in Quaternary sediments around the world, so the new technique can be used to build regional Ice Age chronologies everywhere, giving it enormous international scope”.

Vital to the study were the inter-disciplinary collaborations with Quaternary scientists, the core team of which involved researchers at the Department of Geography, University of Durham; Institute of Archaeology and Antiquity, University of Birmingham; Institute of Archaeology, University College London; the Netherlands Centre for Biodiversity, Leiden and the Department of Palaeontology, The Natural History Museum.

The analyses were funded by English Heritage, Natural Environment Research Council and the Wellcome Trust. The research is a contribution to the Ancient Human Occupation of Britain (AHOB) project funded by the Leverhulme Trust.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/news-and-events/news/2011/research/amino-acid/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>