Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D satellite, GPS earthquake maps isolate impacts in real time

24.03.2015

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.


Satellite radar image of the magnitude 6.0 South Napa earthquake. The "fringe" rainbow pattern appears where the earthquake deformed the ground's surface, with one full cycle of the color spectrum (magenta to magenta) showing 3 centimeters of change. Satellite data like this can now be used to give researchers an understanding of an earthquake and its impacts within days.

Photo courtesy of the European Space Agency

New research from the University of Iowa, along with the United States Geological Survey (USGS), shows that GPS and satellite data can be used in a real-time, coordinated effort to fully characterize a fault line within 24 hours of an earthquake, ensuring that aid is delivered faster and more accurately than ever before.

Earth and Environmental Sciences assistant professor William Barnhart used GPS and satellite measurements from the magnitude 6.0 South Napa, California earthquake on August 24, 2014, to create a three-dimensional map of how the ground surface moved in response to the earthquake. The map was made without using traditional rapid response instruments, such as seismometers, which may not afford the same level of detail for similar events around the globe.

"By having the 3D knowledge of the earthquake itself, we can make predictions of the ground shaking, without instruments to record that ground shaking, and then can make estimates of what the human and infrastructure impacts will be-- in terms of both fatalities and dollars," Barnhart says.

The study, "Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake" published in the March/April edition of Seismological Research Letters, is the first USGS example showing that GPS and satellite readings can be used as a tool to shorten earthquake response times.

And while information about an earthquake's impact might be immediately known in an area such as southern California, Barnhart says the technique will be most useful in the developing world. The catastrophic magnitude 7.0 earthquake that hit Haiti in 2010 is the perfect example for the usefulness of this kind of tool, Barnhart says. The earthquake struck right under the capital city of Port Au Prince, killing up to 316,000 people, depending on estimates, and costing billions of dollars in aid.

"On an international scale, it dramatically reduces the time between when an earthquake happens, when buildings start to fall down, and when aid starts to show up," Barnhart says.

To accurately map the South Napa earthquake for this study, Barnhart and a team of researchers created a complex comparison scenario.

They first used GPS and satellite readings to measure the very small- millimeter-to-centimeter-sized-displacements of the ground's surface that were caused by the earthquake. They fed those measurements into a mathematical equation that inverts the data and relates how much the ground moved to the degree of slip on the fault plane. Slip describes the amount, timing, and distribution of fault plane movement during an earthquake.

This allowed the group to determine the location, orientation, and dimensions of the entire fault without setting foot on the ground near the earthquake. The mathematical inversion gave the researchers predictions of how much the ground might be displaced, and they compared those results to their initial estimations, bit by bit, until their predictions and observations match. The resulting model is a 3D map of fault slip beneath the Earth's surface. The entire procedure takes only a few minutes to complete.

Nationally, there is a push to create an earthquake early-warning system, which is already being tested internally by the USGS in coordination with the University of California, Berkeley; the California Institute of Technology; and the University of Washington. While only researchers, first responders, and other officials received the early warning message, it did work in testing for the Bay Area during the Napa earthquake. Individuals in Berkeley received nearly 10 seconds of advanced warning before the ground began shaking. The information contained in Barnhart's study could be used to create further tools for predicting the economic and human tolls of earthquakes.

"That's why this is so important. It really was the chance to test all these tools that have been put into place," Barnhart says. "It happened in a perfect place, because now we're much more equipped for a bigger earthquake."

Media Contact

Brittany Borghi
brittany-borghi@uiowa.edu
319-384-0048

 @UIowaResearch

http://www.uiowa.edu 

Brittany Borghi | EurekAlert!

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>