Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The plastic brain: Better connectivity of brain regions with training

02.07.2018

Researchers at the Leibniz-Institutes für Wissensmedien (IWM) and of the Graduate School and Research Network LEAD at the University of Tübingen now found out: Short and intensive arithmetic training strengthens the neuronal connections between brain regions in adults. This neuronal plasticity through numerical learning was already detectable after only five training sessions.

No matter whether a person learns new knowledge or a new body movement – synapses, nerve cell connections and entire brain areas, i.e. the function and structure of the brain, do always change.


Fiber connections associated with the retrieval of numeric facts. Media-based training strengthened the conductivity of the fibers connected to long-term memory.

Leibniz-Institut für Wissensmedien (IWM)

The human brain remains “plastic” for a lifetime, i.e. it is able to change. Researchers led by Dr. Dr. Elise Klein at the Leibniz-Institut für Wissensmedien (IWM) have investigated functional and structural changes of the brain as consequence of media-based numerical learning. It seems obvious that arithmetic training has an impact on our ability to calculate.

The study demonstrated this on a neuronal level: The calculation training changed the network of brain areas that was activated when solving math calculations. However, the study has now also revealed structural changes in the brain as a result of calculation training - and thus anatomical changes in the neuronal network.

The findings indicate how learning processes manifest themselves in the brain and show the potential of neurocognitive plasticity in adulthood.

The calculation training not only successfully improved the performance of the participants, the researchers from Tübingen also succeeded in determining how this learning process takes place on a neuronal level. In a previous study, they had already observed that training increases functional activation in brain areas associated with the retrieval of arithmetic facts from long-term memory (e.g. hippocampus). By using diffusion-weighted magnetic resonance imaging, the researchers have now been able to show that the training also strengthened the structural connection between these areas which led to a successful learning process. "The neuronal plasticity following media-based training was already evident after only five training units," says Elise Klein from the IWM.

"This change at the neuronal level indicates that even short cognitive training sessions can induce plastic processes in the brain. The selectivity of the neurostructural changes, in turn, gives insight into the processing of arithmetical facts in the brain." The findings not only indicate how learning processes manifest themselves in the brain, but also show the potential of neurocognitive plasticity in adulthood.

Korbinian Moeller, head of the Junior Research Group Neuro-cognitive Plasticity, comments on the results of the study: “The study improves our understanding of the neuronal foundations of numerical learning and of the possibilities of neuronal reorganisation in the brain. The results can be used to develop interventions for children with learning disabilities and for patients with arithmetic difficulties after brain damage.”

Results of the study have been published in the renowned journal “Cortex”.

More Information:
Dr. Dr. Elise Klein
NG Neuro-cognitive Plasticity
Phone: +49 7071 979-205
Email: e.klein@iwm-tuebingen.de
Press:
Mira Keßler
Press Department
Phone: +49 (0) 7071 979-222
Email: presse@iwm-tuebingen.de

Since April 2015, Elise Klein has been working at the IWM in the junior research lab Neuro-cognitive Plasticity within the Wrangell Habilitation Programme. The researchers of the lab are particularly interested in the neural foundations of knowledge acquisition and knowledge application. The topical focus of the junior research group is on numerical cognition with particular interest being paid to the neural correlates of number processing as well as its development during childhood.

Weitere Informationen:

Study: https://doi.org/10.1016/j.cortex.2018.05.017

Mira Keßler M.A. | idw - Informationsdienst Wissenschaft
Further information:
http://www.iwm-tuebingen.de

More articles from Communications Media:

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>