Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Rumors Spread Fast in Social Networks

21.05.2012
Information spreads fast in social networks. This could be observed during recent events. Now computer scientists from the German Saarland University provide the mathematical proof for this and come up with a surprising explanation.

“It is fascinating,” Tobias Friedrich of the Cluster of Excellence on “Multimodal Computing and Interaction” says. He points out that so far, it has been assumed that the uncontrolled growth in social networks creates a structure on which information spreads very fast. “But now we can prove it in a mathematical way,” says Friedrich, who leads the independent research group “Random Structures and Algorithms.”

Together with his research colleagues Benjamin Doerr, adjunct professor for algorithms and complexity at Saarland University, and the PhD student Mahmoud Fouz he proved that information spreads in social networks much faster than in networks where everyone communicates with everyone else, or in networks whose structure is totally random.

The scientists explain their results through the successful combination of persons with many contacts and persons with only a few contacts. “A person who keeps only a few connections can inform all of these contacts very fast,” Friedrich says. Additionally, it can be proved that among these few contacts there always is a highly networked person who is contacted by a lot of other people in the social network, the scientist points out. “Therefore everybody in these networks gets informed rapidly.”

To model how people connect with each other in a social network, the scientists chose so-called preferential attachment graphs as a basic network model. It assumes that new members of a social network would more likely connect to a person maintaining many connections than to a person with only a few contacts. The communication within the network is based on the model that every person regularly exchanges all information with his or her contacts, but never speaks to the person contacted in the previous communication round.

It took the scientists twelve pages to write down the mathematical proof. They explain the concept of the proof more simply in the article “Why Rumors Spread Fast in Social Networks,” published in the peer-reviewed magazine “Communications of the ACM” in June.

Computer Science on the Saarland University campus

A unique number of renowned computer science institutes do research on the campus in Saarbrucken, Germany. In addition to the computer science faculty and the Cluster of Excellence, these include the German Research Center for Artificial Intelligence (DFKI), the Max Planck Institute for Informatics, the Max Planck Institute for Software Systems, the Center for IT Security, Privacy and Accountability and the Intel Visual Computing Institute.

See also:
Social Networks Spread Rumors in Sublogarithmic Time
www.mpi-inf.mpg.de/~tfried/paper/2012CACM.pdf
For further information please contact:
Tobias Friedrich
Cluster of Excellence “Multimodal Computing and Interaction"
Phone: 0681 9325 1055
E-Mail: t.friedrich@mpi-inf.mpg.de
Gordon Bolduan
Science Communication
Cluster of Excellence “Multimodal Computing and Interaction"
Phone: 0681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Saar - Uni - Presseteam | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.mpi-inf.mpg.de/~tfried/paper/2012CACM.pdf

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>