Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mobile phone functions fit into a smaller space than before

05.04.2002


Even a conventional mobile phone user demands more functions and better performance of his mobile phone in the smallest possible space. The mobile phone should also be easy to use, reliable and inexpensive. In order to meet these demands, more data and functions than before must be packed into the circuit boards of mobile phones in the future.



The researchers at the Helsinki University of Technology have met this challenge by developing a new type of production method for electronics, a so-called IMB (Integrated Module Board) technology. Due to this technology, the performance of an electronics product is improved, more functions can be added to a smaller space than before and the reliability of the mobile phone is improved further.

"When we started to develop miniaturised electronics products, we wanted to get rid of the casings of the microchips to be packed onto the circuit board, because they took up too much space. The size of conventional microchip casings may be ten times as big as the actual microchip," Professor Jorma Kivilahti, the director of the Laboratory of Electronics Production Technology of the Helsinki University of Technology, explains.


"In the new IMB technology the components are integrated into the circuit board. A module manufactured in this manner is smaller and its electronic properties are better than those of the present component boards. The IMB module is fabricated by using photo definable polymers and fully additive electroless plating processes," Professor Kivilahti states.

"Electrical contacts are made of copper metal in connection with the manufacture of the module`s circuit wiring. Thus no soldering is used in the contacting of components. The present assembly techniques for electronics components are based on soldering."

This new technology will perhaps be available to the conventional mobile phone user in four or five years` time. The Helsinki University of Technology has transferred the rights of the technology developed by it to Aspocomp Oy and Elcoteq Networks Plc., who participated in the project. The task of these companies is to develop and productify production techniques. Nokia has also participated in the development of the new technology.

The IMB technology has been developed as part of the EXT technology programme financed by Tekes, the National Technology Agency of Finland.

Pia Mörk | alphagalileo

More articles from Communications Media:

nachricht More focus and comfort at telephone workstations
20.02.2020 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>