Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the Weizmann Institute have identified some basic principles of communication

10.05.2006


How do we succeed in putting our ideas into words, so that another person can understand them? This complex undertaking involves translating an idea into a one-dimensional sequence, a string of words to be read or spoken one after the other. Of course the person on the receiving end might not get the intended point: The effective expression of one’s ideas is considered an art, or at least a desirable and important skill.



A team of scientists that included physicists and language researchers at the Weizmann Institute of Science recently investigated this process by applying scientific methods to some of our culture’s most successful models for effective transfer of ideas – classic writings that, by common agreement, get their messages across well. They created mathematical tools that allowed them to trace the development of ideas throughout a book.

The international team included Prof. Elisha Moses of the Weizmann Institute’s Physics of Complex Systems Department and Prof. Jean-Pierre Eckmann, a frequent visitor from the University of Geneva, as well as postdoctoral fellow Enrique Alvarez Lacalle and research student Beate Dorow from the University of Stuttgart. The paper describing their research was recently published in the Proceedings of the National Academy of Sciences (PNAS).


Because strings of words are one-dimensional, they literally lack depth. Our minds and memories aid us in recreating complex ideas from this string. The narration "encodes" a hierarchical structure. (An obvious hierarchical structure in a text is chapter-paragraph-sentence.) The implication is that our minds decipher the encoded structure, allowing us to comprehend the abstract concept.

To test for an underlying structure in strings of words that are known for their ability to convey ideas, the scientists applied their mathematical tools to a number of books, including writings of Albert Einstein, Mark Twain’s Tom Sawyer, Metamorphosis by Franz Kafka and other classics of different styles and periods. They defined "windows of attention" of around 200 words (about a paragraph) and within these windows, they identified pairs of words that frequently occurred near each other (after eliminating "meaningless" words such as pronouns). From the resulting word lists and the frequencies with which the single words appeared in the text, the scientists’ mathematical analysis was used to construct a sort of network of "concept vectors" – linked words that convey the principal ideas of the text.

Mathematically, these concept vectors can go in many directions, and reading the text can be thought of as a tour along paths in the resulting network. The multidimensional concept vectors seem to span a "web of ideas." The scientists’ work suggests this network is based on a tree-like hierarchy that may be a basic underpinning of language. The reader or listener can reconstruct the hierarchical structure of a text, and thus the multidimensional space of ideas, in his or her mind to grasp "the author’s meaning."

Moses: "Philosophers from Wittgenstein to Chomsky have taught us that language plays a central evolutionary role in shaping the human brain, and that revealing the structure of language is an essential step to comprehending brain structure. Our contribution to research in this basic field is in the creation of mathematical tools that can be used to make the connection between concepts or ideas and the words used to express them, making it possible to trace in a speech or text the path of an idea in an abstract mathematical space. We can understand theoretically how the structure of the wording serves to transmit concepts and reconstruct them in the mind of the reader. A deep question that remains open is if and how the correlations we uncovered serve the aesthetics of the text."

Prof. Elisha Moses’ research is supported by the Clore Center for Biological Physics; the Center for Experimental Physics; and the Rosa and Emilio Segre Research Award.

Jeffrey Sussman | EurekAlert!
Further information:
http://www.weizmann-usa.org
http://www.acwis.org

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>