Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIEHS launches website with information for assessing environmental hazards from Hurricane Katrina

12.09.2005


A new website with a Global Information System will provide valuable information for assessing environmental hazards caused by Hurricane Katrina. The National Institute of Environmental Health Sciences (NIEHS), one of the National Institutes of Health, created the website to provide the most up-to-date data to public health and safety workers on contaminants in flood waters, infrastructure and industry maps, as well as demographic information for local populations.

The NIEHS Hurricane Katrina Information Website, accessible at www-apps.niehs.nih.gov/katrina, provides information on assessing and evaluating hundreds of potentially hazardous environmental pollutants that may pose a risk to human health. The website draws from information that NIEHS has acquired from a variety of sources including its research programs, as well as through its Superfund Basic Research Program, Worker Education and Training Program, and Environmental Health Science Centers.

The website also includes a link to a new Global Information System (GIS) that NIEHS is developing with several academic partners.



The GIS will contain layers of data, including the locations of refineries, oil pipelines, industrial facilities, Superfund sites, Toxic Release Inventory Data, agricultural operations, as well as maps and satellite images of schools, neighborhoods, and medical facilities, that will help assess the short and long effects of Katrina on the Gulf region.

"With a disaster of this magnitude, people need many things, including easy access to science based information so they can make informed decisions to further reduce their risk of harm," said NIEHS Director Dr. David Schwartz. "Consolidating information in this new website is one vehicle that NIEHS is using to help our fellow citizens."

Information in the GIS, such as the demographics of populations before Katrina will be helpful as health officials treat displaced citizens who may have been previously exposed to toxicants. Subsequent phases will provide more in-depth information to fully assess exposures and make informed decisions about risk of disease.

"This GIS has the capability of being a powerful tool to fully assess and evaluate the short- and long-term environmental health effects of Hurricane Katrina. It will help us all make informed decisions about the uncertainty of risk of exposure and potentially enable us to better understand the links between exposure and disease, "said William A. Suk, Ph.D., Director of the NIEHS Superfund Basic Research Program.

Other partners working with NIEHS in the development of the various phases of the GIS include Duke University, University of California at San Diego, University of Kentucky, Johns Hopkins, University of Arizona, Boston University, Columbia University, Research Triangle Institute and Harvard University.

The Hurricane Katrina Information Website also provides other ongoing NIEHS efforts related to recovery efforts, including collaborations with other federal agencies.

Christine Bruske | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>