Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwires: replacement for the CD-ROM?

07.03.2005


A ballpoint that detects if we are forging a signature or a substitute in miniature for the CD-ROM are some of the applications that can be carried out using microwires.



3 or 5 times thinner than a human hair, these fine threads were invented in the old Soviet Union for military purposes but, the broader scientific community has been studying them for some time now for other applications – including at the University of the Basque Country (EHU).

Body and coating


Microwires have a metal body and a glass coating. The size of the metal body is usually about 1-20 ìm radius and the glass coating of between 5 and 20 ìm thickness Being so fine, the microthreads are totally flexible.

The main body of the microwire made of a ferromagnetic alloy, the composition of which varies depending on the metals used in the alloy and on the final dimensions of the thread. As a result, by balancing these two factors, the range of microwires that can be obtained is very wide. But there is one quality that they all have: they all have magnetic properties. It is precisely these magnetic properties and their diminutive size that make them so appreciated.

10 Gigabytes in 10 cm long

Amongst all the possible applications, the research team at the EHU has launched a similar project for using microwires as a system for storing information. The microwires become diminutive substitutes for the CD-ROM, given that information can be stored magnetically on them, as with CDs.

To do this, researchers use a magnetic properties present in certain microwires: the magnetic bistability associated with a circular, "bamboo"-type structure of domains. This structure presents positive and negative magnetising orientations at the surface of the microwire when this is subjected to a magnetic field, i.e. the microwire becomes magnetised. As a result, the two orientations of the magnetisation at the surface can be interpreted as the 1 and the 0 of a digital system (respectively positive and negative).

Taking this property into account, in order to create the replacement for the CD-ROM, the microwire has to be divided up along its length. Of course, the thread cannot be sectioned – the divisions are carried out internally by means of a process of anisotrophy.

The researchers calculate that a 10 cm long microwire can carry out 10 million divisions or cells and in each one of these a byte can be stored. In order to store the byte, each one of these cells is magnetised in one orientation or the other.

Once the information is recorded, a system for retrieving and reading it has to be devised. But the reading is not immediate. The initial response of the reading is an electrical signal which has to be amplified and processed in an appropriate manner in order to access the real information.

These are the targets of this project – but, of course, it is no easy task. The greatest difficulty it seems will be with the reading of information; i.e. the achievement of an electrical signal sufficiently suitable to be converted subsequently into a digital one.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>