Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary antenna technology reduces size dramatically

03.06.2004


Rob Vincent, an employee in the University of Rhode Island’s Physics Department, proves the adage that necessity is the mother of invention.



An amateur radio operator since he was 14, Vincent has always lived in houses situated on small lots. Because he couldn’t erect a large antenna on a confined property, he has been continually challenged over the years to find a way to get better reception.

"I was always tinkering in the basement. Thank goodness, my parents were tolerant. I can still remember my poor father driving up our driveway after a hard day’s work to see wires wrapped around the house," Vincent recalls. "The Holy Grail of antenna technology is to create a small antenna with high efficiency and wide bandwidth," explains Vincent. "According to current theory, you have to give up one of the three--size, efficiency, or bandwidth--to achieve any one of the other two."


After decades of experimentation, combined with a 30-year engineering career and Yankee ingenuity, Vincent has invented a revolutionary antenna technology. The distributed loaded monopole antennas are smaller, produce high efficiency, and retain good to excellent bandwidth. And they have multiple applications.

With this technology it will be possible to double, at minimum, the range of walkie-talkies used by police, fire, and other municipal personnel. Naval ships, baby monitors, and portable antennas for military use are other applications. An antenna could be mounted on a chip in a cell phone and be applied to wireless local area networks. Another application deals with radio frequency identification, which is expected someday to replace the barcode system.

"It could even make the Dick Tracy wrist radio with all the features, such as Internet access, a possibility," Vincent says.

The inventor pursued his quest to build a better antenna in earnest eight years ago when he and his significant other moved into a house situated on a 50-foot by 100-foot lot in Warwick. There was nothing on the commercial market that could fit the lot that would provide the performance Vincent needed to be heard in distant lands and that would be acceptable to his neighbors. All the small antennas being sold were inefficient and lacked bandwidth, which resulted in low performance and high frustration.

Vincent looked at the techniques that were currently used to reduce antenna size and realized something was missing in the way everyone was approaching the problem.

He began to model various combinations into a computer program called MathCad. His first attempt produced a 21 MHz band antenna that was 18 inches high. Normally, antennas for this band are 12 to 24 feet high. Vincent installed the antenna in his back yard. The legal limit that amateurs can operate is 1,000 watts with the norm being 100 watts. The amateur radio operator experimented with 5 to 10 watts. He reached a station in Chile and made contacts in various European countries. Meanwhile he kept adding power until it reached 100 watts. That’s when things suddenly went bad. Walking outside in the backyard, he understood why. The antenna had melted.

After examining the molten matter, Vincent wasn’t discouraged. This was only a small model and not designed to handle much power. The part of the antenna that failed proved to be the key to the design. After analyzing the failure, Vincent realized that he was able to transform a lot of current along the antenna with even relatively low power.

"Antennas radiate by setting up large amounts of current flow through various parts of their structure," he says. "The larger the current the more radiation and the better the output of the antenna."

Vincent went back to the drawing board and continued to improve the technology. Relying on his nearly 30 years at Raytheon Co. and at KVH Industries in Middletown R.I which provided him with a diversified background in electronics and electronic systems, Vincent overcame a myriad of problems and succeeded.

He established three test sites for various prototypes. Antennas were placed in Westport, Mass. in a salt marsh, the best ground for transmission and reception. Another set of antennas were placed on rocky ground in Cumberland, R.I., the worst kind of site, and at a Warwick site which is in between the two. The antennas, which resemble flagpoles, worked well at all locations.

Tests confirmed that Vincent has created antennas at one third to one ninth of their full size counterparts. Normally smaller antennas are only 8 to 15 percent efficient. Vincent’s antennas achieved 80 to 100 percent efficiency as compared to the larger antennas.

A patent is pending on Vincent’s technology. The inventor has made the University of Rhode Island and its Physics Department partners that will benefit from any revenue his invention earns. "The University and its Physics Department has been very supportive and given me time and space to work on this project," says Vincent who was recently presented the 2004 Outstanding Intellectual Property Award by URI’s Research Office. "I couldn’t have done this without the University’s support. It’s only fair that it share in the profits."

Jan Wenzel | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>