Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT student dances with robots

05.02.2004


Sommer Gentry with the robotic arm she programmed to "dance" with her
Credit: Dorry Segev


Potential applications in robotic surgery, more

The bubbly clarinet solo that opens a 1940s swing classic begins, setting a pair of dancers in motion. They move in constant rhythm, varying their steps to the song’s changing tempo. Slight pushes and pulls of the dancers’ hands allow seamless transitions between swing-outs, tuck turns and Texas Tommies.

You might call this swing dancing. Or you might call it a highly evolved system of communication and control via haptic (touch-based) signaling. Graduate student Sommer Gentry, an expert swing dancer, sees it both ways.



Gentry, who has appointments in the Department of Electrical Engineering and Computer Science and in the Laboratory for Information and Decision Systems, is investigating the complex haptic communication behind the often-improvised moves in swing dancing. Her experiments have already shown that pure haptic communication (without visual cues) is sufficient for two humans--or even a human and a robot--to move in coordination. The paper describing the results of Gentry’s human-robot experiments won the Best Student Paper Award at the 2003 IEEE Systems, Man and Cybernetics Conference.

Understanding the effectiveness of haptic communication in swing dancing could lead to broad applications in human-robot collaboration, says Gentry. "This is a research field with important applications," she continued, such as robotic surgery. "There are existing steady-hand robots that [a doctor can] hold onto that will take the tremors out of their movement. Such robots could be improved by research like mine that might imbue the tool with a richer ability to understand and respond to what the user is doing based on a ’vocabulary’ of moves."

"Sommer is entering an exciting area of research which is between engineering, psychology, and human motor-control studies. It could be of importance for sports training or rehabilitation engineering--the study of how to use technology to help humans overcome disability or injuries," said Roderick Murray-Smith, a senior researcher at the National University of Ireland-Maynooth’s Hamilton Institute who collaborated with Gentry on her paper.

Gentry’s husband and dance partner, Dorry Segev (whom she met through dancing), is a chief resident in surgery at Johns Hopkins Hospital. "That’s where my interest in robotic surgery applications comes from," she said. Melding her hobby with her work is great, she added, "because it means that even when I’m out dancing, I’m thinking about my research project."

Gentry and Segev are seriously good at their hobby. They have performed all over the world and excelled in competition; they placed fifth in the 2001 and 2003 national Lindy Hop championships and first in the 2002 U.K. Lindy Hop Open. They also teach swing dancing, specializing in "1930s smooth-style Lindy Hop, collegiate shag and Balboa," according to their web site, http://www.dorryandsommer.com.

Teaching inspired Gentry to view dancing from an engineering point of view. "I realized it was an engineering question: how do you dance well with someone? It would be great to give people mathematical and engineering proofs of why they have to dance the way I say."

While there has been some scientific investigation of dance--on the physics of ballet, for instance--"what’s missing is any sort of partner-dancing aspect," Gentry said. "Partner dancing involves both controlling your own body’s physical properties and communicating information to the other person."

To prove the effectiveness of haptic signaling in swing dancing, Gentry first recruited a pair of fellow Lindy Hoppers and got them to dance while blindfolded. That experiment verified what she already knew from "Jedi" swing contests in which the follower or both dance partners are blindfolded: even without visual information, an experienced follower can correctly interpret the leader’s haptic signal (e.g., a push on the hand) by executing that signal’s corresponding move (e.g., a half-spin). She posited that this is because the dancers, in addition to receiving aural cues from the music, share a vocabulary of known moves.

The next step for Gentry was to program a robot to dance with a human. In 2002, while she was a visiting researcher at the Hamilton Institute, she programmed a PHANToM, an arm-like robotic device, to perform a random sequence of leads in time to "New York, New York."

Human test subjects with varying degrees of dance experience held the "hand" of the PHANToM and managed, for the most part, to successfully follow its unpredictable leads. The key was their familiarity with the moves. It wasn’t exactly Fred Astaire and Ginger Rogers, but it was a solid first step in Gentry’s far-off goal: to design a truly interactive robot leader "who could signal move changes in advance, who could recognize an error in the follower and execute a different move to compensate for it"--just like an experienced human leader does.

Her motive is not to create a robot substitute for her husband. Rather, "in the process of recreating a partner dancer, I will have occasion to satisfy my overwhelming curiosity about how partner dance works with two people," she said.

Figuring out how partner dancing works could apply to a wide range of other systems requiring simultaneous communication and control in real time.

"I’m thinking about things such as collaborative, fast and coordinated actions for unmanned systems," said Gentry’s faculty advisor, Professor Eric Feron of aeronautics and astronautics. "Urban warfare, for example, requires people and systems to conduct very closely coordinated actions to detect danger and eliminate it."

More broadly, Gentry’s work "has relevance for how we interact with machines and computers," Murray-Smith said. "In a few years, we might not view interacting with computers as a ’command and control’ scenario, but rather more like a waltz, where sometimes the computer leads the user and other times the user leads the computer, with smooth transfers of who is leading."


Gentry is supported by a U.S. Department of Energy Computational Science Grad-uate Fellowship, awarded from 2001-05.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>