Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractal-shaped tiles developed for new broadband antenna class

20.10.2003


Penn State engineers have developed innovative design methods for a new class of antennas composed of an array of fractal-shaped tiles that offer anywhere from a 4:1 to 8:1 improvement in bandwidth compared to their conventional counterparts.


Douglas H. Werner, professor of electrical engineering and senior scientist, Applied Research Laboratory, Penn State in front of tiles at the Alhambra, Granada, Spain.



Many natural objects, such as tree branches and their root systems, peaks and valleys in a landscape and rivers and their tributaries are versions of mathematical fractals which appear pleasingly irregular to the eye but are actually made of self-similar, repeated units.

The new broadband antennas are composed of irregular but self-similar, repeated fractal-shaped unit tiles or "fractiles" which cover an entire plane without any gaps or overlaps. The outer boundary contour of an array built of fractiles follows a fractal distribution.


Dr. Douglas H. Werner, professor of electrical engineering and senior scientist in Penn State’s Applied Research Laboratory, will describe the new antennas and their generation at the 2003 IEEE AP-S Topical Conference on Wireless Communication Technology, Oct. 16, in Honolulu, Hawaii. His paper is "A New Design Methodology for Modular Broadband Arrays Based on Fractal Tilings." His co-authors are Waroth Kuhirun, graduate student, and Dr. Pingjuan Werner, associate professor of electrical engineering.

While fractal concepts have been used previously in antenna design, Werner and his research team are the first to introduce a design approach for broadband phased array antenna systems that combines aspects of tiling theory with fractal geometry.

Once the specific fractile array has been designed, the Penn State team exploits the fact that fractal arrays are generated recursively or via successive stages of growth starting from a simple initial unit, to develop fast recursive algorithms for calculating radiation patterns. Using the recursive property, they have also developed rapid algorithms for adaptive beam forming, especially for arrays with multiple stages of growth that contain a relatively large number of elements.

Werner says, "The availability of fast beam forming algorithms is especially advantageous for designing smart antenna systems." The Penn State team has also shown that a fractile array made of unit tiles based on the Peano-Gosper curve, for example, offers performance advantages over a similar-sized array with conventional square boundaries. The Peano-Gosper fractile array produces no grating lobes over a much wider frequency band than conventional periodic planar square arrays.

Werner explains that "Grating lobes are sidelobes with the same intensity as the mainbeam. They are undesirable because they take energy away from the main beam and focus it in unintended directions, causing a reduction in the gain of an antenna array." The University is patenting the team’s approach to Peano-Gosper and related fractile arrays. The team has also been awarded a grant through the Applied Research Laboratory to build and test a prototype.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>