Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New navigation tool offers a virtual world for the blind

26.08.2003


Innovative students and professors at the University of Rochester have created a navigational assistant that can help inform a visually impaired person of his whereabouts, or even bring new dimensions to museum navigation or campus tours for sighted individuals. The system, nicknamed "NAVI" for Navigational Assistance for the Visually Impaired, uses radio signals to gauge when someone is near passive transponders that can be as small as a grain of rice and located on the outside of a building, on a specific door inside, or on a painting or object of interest. Biomedical engineering and electrical and computer engineering students in conjunction with professors created the device and have now applied for a patent on the technology.



"This is a wonderful example of our students taking theory from the classroom, knowledge of some of the difficulties faced by some groups of people, and combining that with existing devices to transform it into a real-world application that is of genuine usefulness to people," says Jack Mottley, associate professor of electrical and computer engineering and biomedical engineering.

The system works like the security tags that are frequently on items in retail stores, or those used by certain gasoline stations and fast-food chains that allow you to wave a tiny wand near a detector on a gas pump or cash register. In those circumstances, a radio signal is beamed from the detectors by the door, gas pump, or cash register and is picked up and returned by a tag within a certain range. The security tags simply set off an alarm, while other tags can encode information, allowing the reader to debit your account for the sale.


Mottley and his students decided to turn things around.

The engineering students decided to make the reader portable and affix the tags to stationary objects, like buildings. The system can then use the encoded information to make possible an assistance device for the blind. They built a piece of equipment that was essentially a portable detector coupled to an audio playback device.

The undergraduate students decided to connect a portable CD player to the device, programmed to play a particular track through an earphone whenever a certain tag was detected. It could be a simplistic message such as, "Mr. Smith’s office door," to an elaborate discussion of a piece of art in a museum, or the history of a building on a self-guided campus tour. Using a CD player would allow a person to switch CDs for different purposes and locations; for instance, there may be a CD for getting around a city, complete with street names and structures of interest, or another to guide a user throughout an office building. Future incarnations of the device could store information in solid-state memory that could be updated automatically when entering a new building, or allow a person to lay out her own tags and record relevant information for each.

Built of off-the-shelf components, the NAVI device currently is a black box about half the size of a loaf of bread, with a portable CD player and an antenna that looks like a singer’s microphone. A final version would probably be as small as a portable CD player, and if solid state memory like those in today’s popular MP3 players were incorporated, the entire device may be no larger than a deck of cards.

"To prepare a building or site for use with this system will be relatively inexpensive," Mottley says. "The tags are inexpensive now and the prices are still dropping. The plan is to use only passive tags that do not require batteries or need to be plugged in, meaning once they are installed they can be ignored." Tags could even be painted over without losing their capabilities. An organization using the system would assemble an audio recording of the messages to be played when in proximity of each tag, and then burn compact discs with these messages. When a user comes into a new area or onto a new campus, they would be given a CD that they would put into their own reader. Updates and upgrades will be handled by facility managers by recording new CD’s.

In the far future, a NAVI system may find uses well beyond helping the visually impaired navigate their surroundings. Such a personal identifier might be built into cell phones or wristwatches, allowing someone to gain information on almost anything around them, from customer reviews about a shirt they’re considering buying, to paying for a soda at a vending machine.

But even the best technology is useless if no one wants to use it, so Mottley and his students are applying for their patent, with the aim of enlisting the aid of a manufacturer to make the system as user-friendly for the visually impaired as possible. Soon they hope to have the system integrated into a new building on the University campus being designed especially for biomedical engineering, as well as to be included in a large-scale upgrade of signage and markings that has been planned for the University.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>