Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating the e-mail labyrinth

11.06.2003


Who’s in the loop?Visualization shows relationships between correspondents.


E-mail Affinities: Software groups and color codes messages by authors and overlap of subject matter, ascertained by analysis of the text.


Researchers at the University of Southern California have created a new tool for organizing and visualizing collections of electronic mail. It is designed to help legal researchers, historians, archivists, and others faced with challenges in dealing with large email archives.

For examples, consider the following cases:

* A large corporation has just received a subpoena for all email messages on a specific question. Traditional keyword searches return an enormous volume of mail that must be scanned by lawyers and paralegals for applicability. In the same way, the recipients of the subpoenaed data must analyze it. Can this process be sped up and made more efficient?



* A historian is analyzing the history of a government decision, using an email archive. Reading all the text gives a great deal of information about the decision, but only careful notes can keep track of such events as shifts over time in the distribution of information, and even then subtle changes are hard to catch. Can software help?

* A library has just received a donation of a famous scientist’s email correspondence. Besides just a simple listing of titles, addresses, and dates, is there a way that the information in the archive can be made more immediately useful and comprehensible to users?

Anton Leuski of the USC School of Engineering’s Information Sciences Institute will demonstrate a system deisgned to speak to such problems July 30 at the Association for Computing Machinery Special Interest Group conference on Information Retrieval, in Toronto, Ontario.

Called "eArchivarius," Leuski’s system uses sophisticated search software developed for Internet search engines like Google to detect important relationships between messages and people by taking advantage of inherent clues that exist in email collections.

It then automatically creates a vivid and intuitive visual interface, using spheres grouped in space to represent the relationships it discovers.

The display, a system called "Lighthouse" created earlier by Leuski and co-workers, can shuffle the connections to bring different elements to the fore.

In one display configuration, each sphere represents an author in the system. The spheres are visualized in a two- or three-dimensional space in which the distance between them indicates the number of messages exchanged over a given period.

For one collection used as an experimental exercise, exchanges of email among Reagan administration national security officials, this visualization immediately shows some recipients closely packed toward the center with their most frequent correspondents into a tight cluster, while others can immediately be seen to be literally out of the loop, far out on the periphery.

The spheres representing people can also be arranged under the influence of other factors: the content of the authored messages, for example. The resulting configuration shows existing communities of people who converse on the same topic and the relationships among those communities.

Selecting any email recipient can open up another window, which provides a list of all the people with whom the selected person exchanged mail, and a time-graphed record that shows when the exchanges took place.

"For a historian trying to understand the process by which a decision was made over a course of months, this kind of access will be extremely valuable," said Leuski, a research associate at ISI.

And the same interface can instantly return and display individual pieces of mail in the form of hypertext pages with links to the people who sent and received the email and with links to similar email messages.

"Similar messages" can be defined in terms of recipients, text keywords, or both, and in the display produced using this capability; the spheres are the messages themselves, closer to messages similar in (for example) audience. The spheres can also be colored to show other relationships. Topic similarity, for example -- the likelihood of a message to be about a particular topic can be shown by more or less intense color. Different colors indicate different topics creating a map of how the information is distributed among the messages.

"What we have in effect is a four dimensional display, with color added to the three spatial dimensions," said Douglas Oard, an associate professor of computer science from University of Maryland’s College of Information Studies and its Institute for Advanced Computer Studies who is working at ISI during a sabbatical year.

Leuski and Oard have demonstrated the ability to find interesting patterns in collections as small as a few hundred emails, and the techniques they have developed are now being applied to thousands of emails sent and received by a single individual over 18 years. Scaling up to process millions of emails involving thousands of people will be the next challenge.

The elements of eArchivarius flexible and highly useful interface, Oard says, may someday find their way into email client software.

"Email has become a major element of modern life, and the raw material of history," said Oard. "We believe that eArchivarius offers a way into the email labyrinth for researchers of all kinds."



Eric Mankin | USC
Further information:
http://www.usc.edu/isinews/stories/91.html
http://www.isi.edu/~leuski/earchivarius/

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>