Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Talking windscreens" could help prevent accidents

09.05.2003


The driving simulator at Leeds University. Credit: University of Leeds


Drivers are four times more likely to have an accident if they use a mobile phone on the road. However, using a "talking windscreen" rather than a traditional mobile phone while driving could reduce this risk, and so help to prevent accidents, according to Oxford University research just published in Psychological Science.

A growing body of evidence shows that using a hands-free phone is as problematic for drivers as using a hand-held phone. It is probably the distraction of a driver´s attention, rather than problems with physically handling a phone, that contributes to the increased accident risk. Indeed, "inattention" has often been cited as one of the leading causes of accidents in numerous major studies of traffic accidents. Therefore anything that can improve a driver’’s concentration while using a mobile phone should help to reduce the risk of accident.

Dr Charles Spence of Oxford’s Department of Experimental Psychology and Dr Liliana Read from the Department of Transport in London found that the physical location from which a person’’s voice is heard influences a driver?s concentration. In particular, participants in their experiments found it easier to divide their attention between eye and ear if the relevant sources of information came from the same direction.



In their studies, participants were required to drive a car in the advanced driving simulator at Leeds University. A three-dimensional graphic scene of the outside world was presented on a screen in front of the windshield in real-time. Participants were asked to perform a listening and speaking task whilst simultaneously driving around suburban and inner city roads. Two loudspeakers, one placed directly in front of them and one on the side, alternately played words that participants were asked to repeat, a task known as ’’shadowing’’. People found it much easier to combine the driving and shadowing tasks if the voice they were listening to came from the loudspeaker placed directly in front of them, rather than from the side (as when drivers hold a mobile phone to their ear).

These results show that people find it much easier to look and listen in the same direction than in different directions. This is presumably because humans have evolved to deal with sights and sounds that usually originate from the same place (as when, for example, we see, hear, and feel a mosquito landing on our arm).

Dr Spence said: ’’These results highlight an important factor limiting a driver?s ability to do more than one thing at once. However, there are some measures that car designers could introduce to increase safety, such as flat-screen loudspeakers placed by the windscreen in front of the driver. Moreover, by adopting a more ecological approach to interface design in the future, it may be possible to develop multisensory warning signals that can more effectively stimulate a driver’’s senses, and so reduce the risk of accidents while driving.

’’The safest way of avoiding accidents, however, is not to use a mobile phone at all while driving.’’

Barbara Hott | alfa

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>