Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to facilitate extraction

18.12.2008
With today's large flows of data-based texts it is important to produce systems that facilitate searches for the particular information that is required.

Information on, for example, events in a company from news texts; who is leaving which post, why, to which company and position the person is moving etc. In his thesis Fredrik Olsson deals with a new method of facilitating the marking up of occurrences of names in data-based textual documents.

Information extraction entails analysing texts with the aim of identifying and picking out information about predefined types of entities, events in which the entities are engaged and relationships between entities and events. In other words it is about gaining access to structured information from an apparently unstructured source of information.

One of the reasons that information extraction is not available for everyone is that it requires a lot of work and time to adapt a system to function for new data in a new text domain. A system that could handle the scenario used as an example above would probably not function at all if the data were changed to identifying interactions between proteins described in biomedical text.

An established way of approaching the problem of domain adaptation of systems for information extraction is to realise its components using machine learning, i.e. computer programs that can learn. In many respects machine learning is based on there being examples from which to learn. A component in an extraction system needs to see examples of the phenomenon it is going to learn to identify, e.g. entities and the relationships between them. The basis of this type of machine learning is thus access to large quantities of examples. However, there are major challenges in producing good examples: it is laborious, takes time and requires a person who knows the domain well to mark up examples in texts.

Recognising names of, for example individuals, companies and locations is fundamental for information extraction. By recognising names we can also start to look for, for example, relationships, expressed in the text, between the bearers of the names.

In his thesis Fredrik Olsson describes the work of developing and evaluating a method, called BootMark, of marking up the occurrence of names in textual documents. BootMark contributes to reducing the quantity of documents that a human annotator needs to mark up in order to train a name recognizer with a performance that is equally good or better than a name recognizer who is trained in a random selection of documents from the same corpus.

Title of the thesis: Bootstrapping Named Entity Annotation by Means of Active Machine Learning. A method for creating corpora.
The thesis will be public defended on Friday 19 December at 1.15 pm
Location: Lilla hörsalen, Humanisten, Renströmsgatan 6
For further information contact Fredrik Olsson, mobile: +46 (0)704 -15 54 10,
e-mail: fredriko@sics.se
Contact person: Barbro Ryder Liljegren Faculty of Arts, University of Gothenburg Tel. +46 (0)31-786 48 65, e-mail: barbro.ryder@hum.gu.se

Eva Lundgren | idw
Further information:
http://www.vr.se

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>