Better hearing with bone conducted sound

Besides investigating the function of a new implantable bone conduction hearing aid, Sabine Reinfeldt has studied the sensitivity for bone conducted sound and also examined the possibilities for a two-way communication system that is utilizing bone conduction in noisy environments.

A new Bone Conduction Implant (BCI) hearing system was investigated by Sabine Reinfeldt:

“This hearing aid does not require a permanent skin penetration, in contrast to the Bone-Anchored Hearing Aids (BAHAs) used today.”

Measurements showed that the new BCI hearing system can be a realistic alternative to the BAHA.

Sound is normally perceived through Air Conduction (AC), which means that the sound waves in the air enter the ear-canal and are transmitted to the cochlea in the inner ear. However, sound can also be perceived via Bone Conduction (BC). Vibrations are then transmitted to the cochleae through the skull bone from either one's own voice, the surrounding sound field, or a BC transducer.

In two-way communication systems, BC is believed to improve the sound quality when used in extremely noisy environments which require hearing protection devices in the ear-canals.

Several studies were performed to investigate the possibilities for a BC communication system and to increase the general knowledge of BC sound perception.

The low-frequency increase in perceived BC sound when wearing ear-plugs and/or ear-muffs is called the occlusion effect. This effect was studied by different methods and it was found that it is lower for deeper insertion of ear-plugs and for larger ear-muffs, and that it varies for different stimulations.

The difference in sensitivity of the BC and AC parts of one's own voice was estimated, showing that the BC component dominated for most sounds between 1 and 2 kHz. To be able to measure the BC component of a person's own voice, a large ear-muff was developed to attenuate the AC sound and to minimize the occlusion effect.

The study also showed that the sensitivity difference between the BC and AC parts of one's own voice were different for different kinds of sounds, depending on where in the mouth the sound is produced and on the influence from the vocal cords.

Also estimated was the difference in sensitivity between BC and AC sound from a surrounding sound field, demonstrating that the BC part was 40 to 60 dB lower than the AC part. This measure gives the maximum attenuation achievable with ordinary hearing protection devices, like ear-plugs and ear-muffs. It also shows the possible noise reduction from the surrounding noise by using a BC microphone, instead of an ordinary AC microphone in front of the mouth, to record one's own voice in a noisy environment.

Moreover, the amount of BC sound reaching the cochleae from different positions of the skull bone was examined with the conclusion that relative BC hearing can be estimated from ear-canal sound pressure and cochlear vibrations.

The thesis “Bone Conduction Hearing in Human Communication – Sensitivity, Transmission, and Applications” was defended in public on June 5, 2009.

More information:
Sabine Reinfeldt, Biomedical Engineering, Signals and Systems, Chalmers university of Technology, Göteborg
+46(0)31-772 80 63, +46(0)708-14 16 49
sabine.reinfeldt@chalmers.se
Pressofficer: Sofie Hebrand; +46 736-79 35 90; sofie.hebrand@chalmers.se
Tutors:
Bo Håkansson, Chalmers university of Technology, Göteborg
+46(0)31-772 18 07
Stefan Stenfelt, Linköping University
+46(0)13-22 28 56

Media Contact

Sofie Hebrand idw

All latest news from the category: Communications Media

Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.

innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors