Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Fraunhofer IDMT’s spatial acoustics simulation, any room can be turned into a concert hall

04.04.2013
Whether it’s in movie theaters or at home, at concerts or at conferences, in clubs or in planetariums – the trend towards 3D audio systems and applications is definitely gaining momentum.

Being among the world’s leading research institutes in the field of spatial acoustics, Fraunhofer IDMT has now added a new feature to its “SpatialSound Wave“ 3D sound system: interactive room simulation technology allows true-to-life sound reproduction in any room.

SpatialSound Wave, the sound and production system developed by Fraunhofer IDMT, allows consistent reproduction of sound objects and acoustic environments, so that the audience can fully immerse themselves in the sound. By empowering SpatialSound Wave to reproduce any room characteristics, Fraunhofer IDMT’s acousticians have created a whole new quality in true-to-life room acoustics simulation.

Interactive spatial acoustics simulation to provide optimal room acoustics

Taking advantage of dynamic room simulation, acoustic characteristics of both virtual and real rooms can be simulated, allowing to achieve excellent 3D sound of music performances and optimal room acoustics. Acoustics produced can be adapted to the requirements and ambient conditions of any event, in order to make for, for example, improved voice sound quality at conferences or optimal sound during concerts. “As we are able to interactively adjust reverberation time, we can manipulate any room acoustics and adapt it to the position and movement of sound sources. For example, when a singer is moving on stage, the audience usually will notice a change in the acoustics they perceice. We are now able to manipulate room acoustics so that any listener, regardless of where they are seated, can enjoy a consistent, true-to-life sound“, says René Rodigast, head of Professional Audio group at Fraunhofer IDMT. “Apart from that, we are able to switch between several simulated rooms in real-time, allowing listeners to get different sound impressions by the push of a button, like, for example, a concert hall, a cathedral, or a football stadium“, Mr Rodigast adds.

Spatial acoustics for multiple purposes

SpatialSound Wave is based on Fraunhofer IDMT’s many years of experience with spatial audio reproduction technology, such as wave field synthesis. SpatialSound Wave comes as a compact spatial sound reproduction system that does not require a closed-loop loudspeaker setup in order to provide great true-to-life sound immersion. The system can be used as a fixed or a mobile installation for conferences, clubs, concerts, events, as well as in planetariums or theme parks.

SpatialSound Wave at Prolight + Sound 2013, Frankfurt

Visitors of the Prolight + Sound trade fair, taking place April 10 – 13 in Frankfurt, are invited to stop by at the booth of Fraunhofer IDMT (Hall 8, E 37) to witness live demos and get to know the latest on interactive room simulation.

Fraunhofer IDMT will also be contributing to the Media Systems Congress at Prolight + Sound, giving a presentation entitled “Speech Reproduction and Concert Acoustics: Spatial Acoustics Simulation in 3D Sound Engineering“, in the course of which attendees will be learning about the technology and what purposes it can be used for.

Speaker: René Rodigast
Date: April 12, 2013, 11 a.m.
Place: Herstellerforum, Media Systems Congress
Media representatives are cordially invited to attend the presentation.
About Fraunhofer IDMT
The Fraunhofer Institute for Digital Media Technology IDMT is doing applied research in the field of audiovisual media. The Institute is known as a competent partner of industry when it comes to developing groundbreaking technologies for the digital media domain. Together with its contracting partners Fraunhofer IDMT develops cutting-edge solutions consistently designed to meet user requirements and expectations. At its headquarters in Ilmenau and its branches in Erfurt and Oldenburg Fraunhofer IDMT employs over one-hundred people working on the Institute’s research portfolio.

Press and Public Relations

Stefanie Miethbauer
Phone +49 3677 467-331
stefanie.miethbauer@idmt.fraunhofer.de

Katrin Pursche | Fraunhofer-Institut
Further information:
http://www.idmt.fraunhofer.de/en/Press_and_Media/2013/pls.html

Further reports about: Acoustics IDMT SpatialSound Wave simulation technology

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>