Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CMU research finds regional dialects are alive and well on Twitter

07.01.2011
Slang terms like y'all, yinz, koo, coo and suttin predict location of tweet authors

Microbloggers may think they're interacting in one big Twitterverse, but researchers at Carnegie Mellon University's School of Computer Science find that regional slang and dialects are as evident in tweets as they are in everyday conversations.

Postings on Twitter reflect some well-known regionalisms, such as Southerners' "y'all," and Pittsburghers' "yinz," and the usual regional divides in references to soda, pop and Coke. But Jacob Eisenstein, a post-doctoral fellow in CMU's Machine Learning Department, said the automated method he and his colleagues have developed for analyzing Twitter word use shows that regional dialects appear to be evolving within social media.

In northern California, something that's cool is "koo" in tweets, while in southern California, it's "coo." In many cities, something is "sumthin," but tweets in New York City favor "suttin." While many of us might complain in tweets of being "very" tired, people in northern California tend to be "hella" tired, New Yorkers "deadass" tired and Angelenos are simply tired "af."

The "af" is an acronym that, like many others on Twitter, stands for a vulgarity. LOL is a commonly used acronym for "laughing out loud," but Twitterers in Washington, D.C., seem to have an affinity for the cruder LLS.

Eisenstein said some of this usage clearly is shaped by the 140-character limit of Twitter messages, but geography's influence also is apparent. The statistical model the CMU team used to recognize regional variation in word use and topics could predict the location of a microblogger in the continental United States with a median error of about 300 miles.

Eisenstein will present the study on Jan. 8 at the Linguistic Society of America annual meeting in Pittsburgh. The paper is available online at http://people.csail.mit.edu/jacobe/papers/emnlp2010.pdf.

Studies of regional dialects traditionally have been based primarily on oral interviews, Eisenstein said, noting that written communication often is less reflective of regional influences because writing, even in blogs, tends to be formal and thus homogenized. But Twitter offers a new way of studying regional lexicon, he explained, because tweets are informal and conversational. Furthermore, people who tweet using mobile phones have the option of geotagging their messages with GPS coordinates.

For this study, Eisenstein and his co-authors — Eric P. Xing, associate professor of machine learning, Noah A. Smith, assistant professor in the Language Technologies Institute (LTI), and Brendan O'Connor, machine learning graduate student — collected a week's worth of Twitter messages in March 2010, and selected geotagged messages from Twitter users who wrote at least 20 messages. That yielded a data base of 9,500 users and 380,000 messages.

Though the researchers could pinpoint the users' locations using the geotags, they can only guess as to their profiles. Eisenstein said it's reasonable to assume that people sending lots of tweets from mobile phones are younger than the average Twitter user and the topics discussed by these users seem to reflect that.

Automated analysis of Twitter message streams offers linguists an opportunity to watch regional dialects evolve in real time. "It will be interesting to see what happens. Will 'suttin' remain a word we see primarily in New York City, or will it spread?" Eisenstein asked.

It might be a mistake to assume that the greater interconnectivity afforded by computer networks and sites such as Twitter will necessarily result in more homogeneity in language. The social circles maintained by social networks such as Twitter often are geographically focused, he noted. Also, many people use the Internet to seek out like-minded people with similar interests, rather than expose themselves to a broader range of ideas and experiences.

The research was supported, in part, by funding from Google, the Air Force Office of Scientific Research, the Office of Naval Research, the National Science Foundation and the Alfred P. Sloan Foundation.

Follow the School of Computer Science on Twitter @SCSatCMU.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>