UCLA Endocrinologist Awarded Prestigious NIH Grant

Considered the power generators of the cell, mitochondria convert oxygen and nutrients into chemical energy for the cell that fuels metabolic activities.

Mitochondrial dysfunction has been associated with many diseases, including Alzheimer's, cancer and diabetes, although its exact role in the development of these diseases remains controversial.

The new T-R01 program was specifically created under the NIH Roadmap for Medical Research to support exceptionally innovative, high risk, original or unconventional research projects that have the potential to transform a field of science. The selected projects tend to be inherently risky, but if successful, can profoundly impact a broad area of biomedical research.

Cohen’s bold proposal will test the paradigm-shifting hypothesis that previously unrecognized molecules, he dubbed “mitochondrial-derived peptides” (MDPs), play an earlier unappreciated role in the regulation of cellular and organismal function, and that disregulation of MDPs is important in disease development.

Likewise, understanding the role of MDPs may lead to development of new therapeutic and diagnostic targets. Since Alzheimer’s, cancer and diabetes particularly affect the elderly, these findings could have a significant impact as the world’s aging population continues to grow. The first of these agents, which Cohen named “small humanin-like peptides,” have already demonstrated promise in animal models of diabetes and cancer.

Cohen was one of only 42 researchers nationwide chosen for the T-R01 award. He also serves as chief of endocrinology at the Mattel Children's Hospital UCLA, as well as co-director of the UCSD/UCLA Diabetes and Endocrinology Research Center.

For more information on Cohen, research plans please visit http://nihroadmap.nih.gov/T-R01/Recipients09.asp

Media Contact

Amy Albin Newswise Science News

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Partners & Sponsors