Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ten-million euro ERC Synergy Grant for new therapeutic brain stimulation project


German, Finnish and Italian scientists working on a helmet to provide spatial and temporal high-resolution brain stimulation to treat stroke, depression and Alzheimer's disease - Tübingen researchers involved

“We aim to revolutionize non-invasive therapeutic brain stimulation.” That is the goal set by Professor Dr. Ulf Ziemann and his team at the Hertie Institute for Clinical Brain Research, the University Hospital and the University of Tübingen.

The precursor to the helmet: Only two coils are used to deliver stimuli, and not every part of the cerebral cortex can be reached.

Ingo Rappers / Hertie Institute for Clinical Brain Research (HIH)

Professor Dr. Ulf Ziemann

Ingo Rappers / Hertie Institute for Clinical Brain Research (HIH)

Working with colleagues at Aalto University in Finland and in Italy at the Chieti-Pescara Gabriele d’Annunzio University, Ziemann is developing a helmet which is capable of stimulating any part of the cerebral cortex using transcranial magnetic stimulation (TMS). Timing of stimulation is coupled to the brain’s current state of activity.

That link allows magnetic stimulation to alter the connection between brain areas especially effectively – easing brain network diseases such as strokes, depression and Alzheimer’s. “In the long term we are expecting a wide range of applications for this technology in treatments,” Ziemann says. The project, called “ConnectToBrain,” has earned the scientists research funding of ten million euros from the European Research Council, in the form of a Synergy Grant. The ERC announced its Synergy Grants yesterday.

Conventional TMS is carried out using a magnetic coil which is placed on the patient’s head and which stimulates the brain non-invasively with magnetic impulses. This stimulation influences brain activity and can strengthen or weaken the connections between nerve cells.

“In conventional TMS, stimulation is conducted according to a fixed protocol, completely uncoupled to what is happening in the brain at the time,” Ziemann says. “However, the brain activity is subject to continuous fluctuations and can change within fractions of a second. As we discovered from earlier studies, TMS is particularly effective when the stimulation is synchronized with the brain’s activity.”

Closed-loop stimulation makes use of this principle; Ziemann and his team have been investigating and further developing it for several years. In this process, an electroencephalogram (EEG) measures brain activity in real time. It is connected to a TMS coil, which – with the help of a special algorithm – sends out impulses synchronised to the millisecond with the brain’s activity.

The researchers now aim to refine this technology. In the newly-sponsored project, they plan to develop a helmet with integrated EEG electrodes and 50 magnetic coils. “The overlapping coils ensure that each area of the human cerebral cortex will be covered and we will then be able to give high-resolution stimulation not only in time, but in the right place as well.” This multi-locus transcranial magnetic stimulation, or mTMS, is even more specific – and Ziemann expects that it will be more effective too.

However, designing the stimulation helmet will require specialist knowledge from various fields. “In this project, the expertise of all three research groups comes together synergetically; it is not something any one group could do by itself,” Ziemann stresses. While the Finnish group produces the coils for the helmet, their Italian colleagues are developing algorithms for the real-time analysis of the activity levels in the brain.

Ziemann and his colleagues are responsible for preparing the technology for clinical application. They are planning the first tests for early next year, using healthy test subjects. Studies with stroke and Alzheimer patients are to follow in three years. “At the conclusion of the project in six years, the device will hopefully be sufficiently refined to launch commercial production,” Ziemann says. “We believe that closed-loop stimulation will usher in a paradigm shift in therapeutic brain stimulation and that it will find a wide range of clinical applications.”

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ulf Ziemann
Hertie Institute for Clinical Brain Research
Hoppe-Seyler-Straße 3
72076 Tübingen
Phone +49 7071 29 – 82049

Weitere Informationen: Hertie Institute for Clinical Brain Research University of Tübingen University Hospital Tübingen

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht 9.1 million euros for trinational quantum research
07.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht 6.7 Million Euros for Microsystems Engineering Project
05.02.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

Science & Research
Overview of more VideoLinks >>>