Second place for Team InVentus from the University of Stuttgart

Team InVentus from the University of Stuttgart at the Aelos-Race 2014 in Den Helder/Netherlands. Photo: University of Stuttgart

At the Aeolus-Race 2014, the World Championship for Ventomobiles (headwind vehicles), the students from Team InVentus from the University of Stuttgart were able to successfully defend their second place from the previous year at the weekend. At this year’s edition of the race from 18th until 24th August in the Dutch town of Den Helder there were once again top-class competitors with nine vehicles from five nations.

The fastest vehicle that could drive directly against the wind with the wind from the surrounding area as a source of energy was the winner. In so doing it was not permitted to drive in a zig-zag style or to traverse like when sailing. Instead of this the teams had to drive directly in the direction of the headwind.

After the gratifying result from the last year, the students wanted to replicate this success and make their vehicle more reliable and quicker. On the basis of the theory learnt in the lectures, they developed the vehicle further and often worked until late into the night on new components.

Initial test runs on the race course directly at the sea confirmed the expectations of the vehicle and therefore there was already a replay of last year’s duel with the Canadian Team Chinook from Montreal on the very first official competition day. After four races respectively in strong winds, InVentus was slightly ahead of the team from Canada, that had to battle sensory problems.

On the next competition day, however, the Canadians were able to solve their problems. They benefitted from the superior hull aerodynamics of their vehicle and secured the victory. The Team InVentus from the University of Stuttgart followed in second place with nearly 80 percent of the wind speed and therefore improved on their performance from the previous year by around 25 percent. The Team “Baltic Thunder” from Kiel secured third place.

Prof. Po Wen Cheng from the Stuttgart Chair for Wind Energy was particularly pleased about the strong result: “The consistent implementation of the theory into practice and the passion with which the students worked on solving complex and interdisciplinary problems is impressive. The clear improvement once again of the vehicle compared to the previous year is also a product of the quality of the teaching at the University of Stuttgart as well as the good framework conditions also outside of the lecture hall.”

Since the return of the team after a one year break in 2012, the University of Stuttgart has entered the most successful team from recent years in the Aeolus Race with two second places in a row. For next year the team is pursuing the great objective of driving as the first team faster than the wind. Initial ideas are already in place: among others the aerodynamics are to be improved and the vehicle sensor technology is to become more reliable.

Further information:
Matthias Arnold, Stuttgart Chair of Wind Energy (SWE) at the Institute for Aircraft Construction (IFB), University of Stuttgart, Tel. 0711/685-68273, Email: arnold@ifb.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu idw - Informationsdienst Wissenschaft

More Information:

http://www.uni-stuttgart.de/

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors