Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the Builder of the Bridge from Gene to Protein

05.08.2008
LMU Biologist Receives EU Grant of One Million Euros

The European Research Council (ERC) promotes pioneering basic research by supporting excellent and unusually creative scientists. Dr. Katja Sträßer from the Gene Center at Ludwig-Maximilians-Universität (LMU) München successfully took part in the “ERC Starting Grant Scheme”, a new EU program for junior scientists.

Dr. Sträßer is one of only 300 applicants whose projects were selected from among 10,000 project proposals throughout Europe. Sträßer will now receive about one million Euros over the next five years. The biologist’s research elucidates the mechanisms of gene expression or, in other words, the conversion of genetic information into proteins. Genes are sections of DNA, the molecule that governs heredity and contains the “blueprint” for building proteins. “What interests me most is how the individual steps of the gene expression are coupled,” explains Sträßer, “The reason being that this explains how the conversion of genetic information is controlled and regulated.”

In a past project she was able to demonstrate that the Ctk1 protein plays a role during different temporally as well as spatially separated phases of gene expression. In the newly funded project she therefore intends to examine the function of this molecule more closely and identify other factors that connect different steps of gene expression. The individual steps of gene expression are already well understood. The coupling of these different steps, however, is a completely new mechanism for regulation – and also occurs in humans.

... more about:
»DNA »Protein »RNA

In higher organisms, gene expression entails a variety of different steps: First, during transcription the genetic information is copied into an RNA molecule. RNA is a nucleic acid chemically similar to DNA. This messenger RNA or mRNA is then processed, that is chemically altered, and packaged by different proteins in a complex that is then exported out of the nucleus. Within the cell interior or cytoplasm, the genetic information contained within the mRNA is finally converted into a protein during translation.

“These processes, which are for the most part temporally and spatially separated, are already well understood,” explains Sträßer. “Only in recent years, it has been shown that some of these processes do not operate independently of each other but are interconnected.” This is especially true for processes that take place in the nucleus or in cytoplasm. The main objective of the newly funded project is to demonstrate a coupling of spatially separate processes or, more specifically, the coupling of transcription to translation.”

A first step in this direction is already taken: Sträßer recently demonstrated that one well-known protein mediates such a wide-ranging coupling. The Ctk1 protein in yeast ensures that transcription is not prematurely terminated and also plays an important role in the processing of the mRNA. “We demonstrated that Ctk1 interacts with the TREX complex, which couples transcription with the nuclear export of the mRNA,” reports the biologist. “Our new results show that Ctk1 is also important for efficient translation or, in other words, for the synthesis of proteins in the cytoplasm.

It is highly likely that the human counterpart of Ctk1, namely the CDK9 protein, also performs this very surprising function. We suspect that Ctk1 binds to the mRNA after the mRNA is processed and is transported to the cytoplasm along with the mRNA where it can then enhance translation.” This protein would therefore be one of the first examples of a connection between gene expression processes taking place in the nucleus and the cytoplasm.

One objective of the planned project is therefore a detailed analysis of the various functions of Ctk1. Furthermore, additional factors with a similarly broad range of functions in gene expression shall be identified. Sträßer is also interested in ribosomes, large complexes made up of proteins and nucleic acids. Ribosomes are responsible for the synthesis of the encoded proteins using mRNAs as a template. “We want to examine how and which ribosomal proteins are chemically modified and which factors participate in this process,” explains Sträßer. “These modifications are important for the regulation of many cellular processes.

Yet to date very little is known about the modification of ribosomes, which are so important for protein synthesis. This makes the modifications alone a very exciting object to study. In addition, these modifications could also be important for the coupling of translation with transcription. Finally, we will examine whether our results obtained with the yeast S. cerevisiae as a model system also hold true for mammal cells. Thus, we aim to identify mechanisms that connect gene expression processes in nucleus and cytoplasm in all higher organisms.”

Since January 2003, Dr. Katja Sträßer is the head of an independent research group at the Gene Center at LMU Munich. The 36-year-old biotechnologist received the prestigious EMBO Young Investigator Award in 2004 and the “Habilitation” Prize of the Dr. Klaus Römer Endowment at the LMU Department of Chemistry and Biochemistry in 2007. Katja Sträßer is also an associated member of the cluster of excellence “Center for Integrated Protein Science Munich (CIPSM)”. The ERC's decision was solely based on the scientific excellence of the applicant and the proposed project.

Projects eligible for funding must be highly innovative – risky but, when successful, opening new and important scientific horizons. The project is expected to involve cooperations as well as a high degree of interdisciplinarity. This EU program for the advancement of basic research was established in 2007.

Kathrin Bilgeri | alfa
Further information:
http://www.uni-muenchen.de
http://www.en.uni-muenchen.de/news/research/index.html

Further reports about: DNA Protein RNA

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>