Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bond receives $500,000 Gruber Cosmology Prize for major theoretical insights into the origin of the Universe

13.06.2008
"Professor Bond's work has provided the theoretical framework to interpret the observed inhomogeneities in the fossil radiation left over from the early stages of expansion of the Universe - the Big Bang," as stated in the official citation. His research "has helped us understand the transition from the nearly featureless early Universe to the wonderfully structured world of galaxies, stars and planets today."

Bond will receive the Gruber Cosmology Prize in September, 2008, at the Harvard Smithsonian Center for Astrophysics in Cambridge, Mass., USA. The prize consists of a gold medal and $500,000.

"When Dick Bond got into this field, we had ideas about how the galaxies formed but little evidence to back them up. Dick pointed the way to measurements that greatly improved the evidence, and he showed how to analyze the measurements," says Philip James E. Peebles, PhD, Albert Einstein Professor of Science and professor emeritus of physics at Princeton University. "Thanks to him we now have a tightly checked theory of the evolution of our expanding Universe." Peebles was one of two recipients who received the inaugural Gruber Cosmology Prize in 2000.

Bond's approach to cosmological questions combines a unique blend of original theory and full involvement in the observations made by experimental teams. He has helped usher the field through three decades of what has been described as its "golden age." Bond is known for solving outstanding and important problems through detailed and thorough calculations and comparisons with observation.

Many of the ground- and space-based telescopes that are sending an avalanche of data back to Earth today are doing so thanks to the work of Bond and his collaborators. Especially influential have been Bond's theoretical ideas on the nature and behaviour of the dark matter that holds galaxies together; the "cosmic web" paradigm for structure formation from the nonlinear dynamics of random density fields; the distribution and state of gas; the evolution of quantum fluctuations from inflation in the early Universe and how to probe them observationally. Much of the nomenclature and methodology was developed by Bond.

Working during the 1980s with George Efstathiou of Cambridge University, Bond theorized and developed detailed calculations to demonstrate that minute fluctuations in the cosmic background radiation (CBR), the photon afterglow of the Big Bang, would provide key clues to the fundamental cosmological parameters of shape, size, age and composition, in particular through the imprint of acoustic peaks and troughs on this "first light". Bond and his colleagues at the Canadian Institute for Theoretical Astrophysics at the University of Toronto, where he is a University Professor and past director, developed an impressive array of statistical tools that became standards in the field to analyse increasingly complex CBR experiments.

Milestones in the analyses included unravelling the cosmic consequences for galaxy formation theories of the first detections of CBR fluctuations by the Cosmic Background Explorer (COBE) satellite and a suite of pioneering experiments in the nineties. This was followed, in this decade, by the exquisite mapping of the CBR at increasingly high resolution by experiments exploiting powerful new detector technologies, including the balloon-borne Boomerang, the Cosmic Background Imager in Chile and the Arcminute Cosmology Bolometer Array Receiver at the South Pole where Bond played a key theoretical role. In accordance with the patterns first computed by Bond and Efstathiou, the maps showed that acoustic peaks exist, are viscously damped as the light is freed from matter, and that the escaping photons are polarized.

The analysis of the data supported most cosmologists' view that the Universe is "flat," and that it will expand forever instead of falling back on itself eons from now. At the same time, the analysis was used to reveal the age of the Universe, how much ordinary matter and dark matter exist, and that the dominant component of the density is the mysterious dark energy that does not cluster as dark matter does, but drives a late-time inflation. Bond is now involved in several other major CBR projects, including the European Space Agency's Planck satellite to be launched at the end of the year, the Spider balloon-borne telescope, and the Atacama Cosmology Telescope in Chile. "What we must marvel at is how simple the Universe appears to have been, characterized by a handful of fundamental cosmological parameters that we have now determined to good precision and will determine with very high precision with the new experiments," Bond says.

"To be able to say that in the course of one's career we've understood what the Universe is made of and how all of the structure we can observe arose - profound philosophical questions all - certainly has been and will continue to be an exhilarating ride! What more could you want with a career? Well, we want to detect gravity waves generated in the first moments of the Universe." A ride that, clearly, is far from over.

The Cosmology Prize honours a leading cosmologist, astronomer, astrophysicist or scientific philosopher for theoretical, analytical or conceptual discoveries leading to fundamental advances in the field. Since 2001, the Cosmology Prize has been awarded in collaboration with the International Astronomical Union. The Foundation's other international prizes are in Genetics, Neuroscience, Justice and Women's Rights. Nominations for the 2009 prizes are now open and close on December 15, 2008.

Lars Christensen | alfa
Further information:
http://www.iau.org/public_press/news/release/iau0805/

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>