Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Matthias Kling receives Röntgen Prize 2011

22.07.2011
Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”.

Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”. This award, sponsored by several private companies from the City of Gießen, is primarily devoted to young scientists who have done excellent work in fundamental radiation physics or fundamental radiation biology.

Matthias Kling, born in Hanover in 1972, studied physics at the Georg-August University, Göttingen, where he earned his diploma in 1998. Successively, he studied laser physics at the Friedrich-Schiller University, Jena, and performed research on the femtosecond spectroscopy of peroxide molecules in the group of Professor Michael Buback in Göttingen. Following his dissertation and a postdoctoral stay in Göttingen, he joined Professor Charles Harris in 2003 at the University of California (UC) Berkeley, USA, as a “Feodor-Lynen” research fellow of the Alexander von Humboldt Foundation. Toward the end of 2004, he joined the group of Prof. Marc Vrakking at AMOLF in Amsterdam, The Netherlands. Here, supported by a Marie-Curie stipend of the European Union, he started to investigate ultrafast processes in atoms and small molecules on an attosecond time scale (one attosecond is a billionth of a billionth of a second). Since 2007, Professor Matthias Kling has been leading the DFG-funded Emmy-Noether group “Attosecond Imaging” at the Max Planck Institute of Quantum Optics, where his group is part of the Laboratory for Attosecond Physics of Prof. Ferenc Krausz. Since 2009, Professor Kling also holds an assistant professorship at Kansas State University in Manhattan, KS, USA, and in 2011 he became a visiting professor at the King-Saud University in Riyadh, Saudi Arabia.

Prof. Kling’s team is performing research on the control and observation of collective electron motion on nanostructured surfaces and in isolated nanoparticles. For this purpose, they use ultrashort, intense near-infrared light flashes, consisting of only a few cycles, and attosecond light flashes in the extreme ultraviolet. Using these ultrashort light flashes, the researchers can observe processes such as the emission and acceleration of electrons on the natural, attosecond time scale of their motion. Nanometer spatial resolution is provided in the “attosecond nano-microscope” by employing a photo-electron emission microscope. Using this attosecond nano-microscope offers the possibility of resolving electron motion on nanostructured surfaces with the highest temporal and spatial resolution. The nano-microscope can be used to study the control of electrons in nanostructures by light waves with unprecedented detail. Such studies are an important step toward the realization of lightwave nano-electronics, which has the potential to increase the speed of electronics by up to 5 orders of magnitude into the petahertz regime. Professor Kling performs the research on nanostructures in close collaboration with colleagues in Germany [Ulf Kleineberg (LMU Munich), Eckart Rühl (FU Berlin), Thomas Fennel (University of Rostock), and Ferenc Krausz] and the US [Mark Stockman (GSU Atlanta, USA)].

The Röntgen Prize will be awarded on November 25th at the official academic ceremony in Gießen. Olivia Meyer-Streng

Contact:

Prof. Dr. Matthias Kling
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 234
e-mail: matthias.kling@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht 3.6 million euros for new quantum-technology project at the University of Stuttgart
12.09.2018 | Universität Stuttgart

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Three NASA missions return first-light data

24.09.2018 | Physics and Astronomy

Brown researchers teach computers to see optical illusions

24.09.2018 | Information Technology

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>