Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Otto Hahn Medal for young aerosol researcher from Mainz

03.06.2014

Christopher Pöhlker from the Max Planck Institute for Chemistry is being awarded the Otto Hahn Medal for his outstanding research of the characteristics and sources of biogenic aerosol particles.

Pöhlker has proven that biogenic aerosols have a much greater influence on clouds and rain than previously assumed. Biogenic aerosols are tiny airborne particles that originate from plants, fungi, and bacteria.


Christopher Pöhlker

private

Their effects on the climate and the environment are still largely unknown. For his pioneering research, the 30-year-old chemist will be awarded the Otto Hahn Medal at the General Meeting of the Max Planck Society on June 4, 2014.

The Max Planck Society awards the Otto Hahn Medal to young scientists every year to promote their research careers. This year the award, worth 7,500 euros, goes to Christopher Pöhlker for his outstanding academic work in connection with his doctoral thesis.

In the opinion of the jury, the thesis gives a new perspective on the role of aerosols in terms of their interactions with the atmosphere, the biosphere, and the global climate.

Pöhlker’s results show, for example, that plants and fungi have greater influence on the formation of clouds and the production of precipitation in the rainforest than previously thought. They release potassium-rich particles that trace gases accumulate on. These particles then serve as condensation nuclei for atmospheric moisture, forming clouds and producing rain.

The chemist did his research in the Amazonian rainforest and in a semi-arid woodland area in the US. He determined the concentration of bioparticles arising from fungal spores, pollen, and bacteria in the atmosphere and characterized their properties by using various methods such as fluorescence microscopy, fluorescence spectroscopy, X-ray microscopy, and X-ray absorption spectroscopy.

Christopher Pöhlker, who is currently on a research campaign in the Brazilian rainforest and is therefore not able to attend the award ceremony in person, studied chemistry at the Philipps-Universität in Marburg. During his studies, he spent some time at the department of organic chemistry at Stockholm University, Sweden.

Since October 2009 he has been active in the Biogeochemistry Department of the Max Planck Institute for Chemistry in Mainz with Meinrat O. Andreae and Ulrich Pöschl. In 2013 Pöhlker successfully completed his thesis, receiving the grade “summa cum laude”. His research has been published in the prestigious science magazine SCIENCE.

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/otto-hahn-medaille-fuer-jungen...

Dr. Susanne Benner | Max-Planck-Institut

Further reports about: Max-Planck-Institut Society X-ray atmosphere bacteria chemist clouds fluorescence fungi gases particles spectroscopy thesis woodland

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>