Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel EU-funded collaborative proteomics project to bring proteomics to clinical application

22.12.2015

Novel proteomic technologies that are so robust and powerful that they can be used in every biological laboratory and in every clinic are expected as results of the currently starting research consortium MSmed. The European Commission is co-funding the project with 3.7 Million Euros for four years starting December 1, 2015 within the research line “Future and Emerging Technologies” under the Horizon 2020 Programme. MSmed will automate workflows in mass spectrometric analysis for proteomics research to prepare them for high-throughput clinical application.

Proteins are the major functional actors within cells and exert most of the cells’ functions. Over the past decade the analysis of the protein inventory of cells and tissues, the „proteome“, has made tremendous progress showing definite promise of mass spectrometry technology in the life sciences.


The MSMed team. Clockwise: Matthias Mann, Jesper Olsen, Albert Heck, Alexander Makarov und Jürgen Cox (middle).

© MPI of Biochemistry

To date proteome analysis is still a specialist technology and has not reached the robustness and availability for large-scale biomedical and clinical applications. In that respect it clearly lags behind genomic technologies that are, however, not applicable to protein based questions.

The MSmed project was initiated to tackle this issue. The vision of project coordinator Matthias Mann is “…to introduce proteome analysis by mass spectrometry as automated routine tool into the clinics”. Complementing current genetic methods with direct proteome analysis would allow measuring actual medical parameters as reflected in the patient’s proteome rather than solely genetic disposition.

Such a paradigm changing approach could transform personalized medicine, revolutionizing medical diagnosis and the assessment of efficacy of medical intervention on an individual basis.

To bring this vision into reality, a team was built around leaders in the proteomics field with a history of successful collaboration. They will bring in a broad range of experiences and expertise to master the various challenges lying ahead. These challenges include the development of novel instrumentation with drastically increased performance, the automation of sample preparation and analysis, the adaptation of analysis protocols to the characteristics of clinical samples, and the development of comprehensive software for extensive in-depth analysis of the large amounts of data obtained.

When successful, MSmed will establish mass spectrometry based proteomics in systems medicine, making all workflows and mass spectrometry platforms available to the community. These workflows will be used as the basis of myriad applications in biomedicine, even in the clinic. This in turn will lead to a new eco-system around improved diagnosis, elucidations of disease mechanisms and drug action.

The MSmed team
The coordinating Mann group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen and Max Planck Institute of Biochemistry, Martinsried), the Olsen group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen) , the Cox group (Max Planck Institute of Biochemistry, Martinsried), the Heck group (Utrecht University) and Makarov from the industrial partner Thermo Fisher Scientific, are all leaders in the field and have a longstanding collaboration concerning the improvement of instrumentation in mass spectrometry, with the aim to make it accessible to all researchers. One example is the earlier EU-funded project PROSPECTS, which was also coordinated by Matthias Mann, where Mann, Olsen, Cox and Makarov jointly invented novel technology for in depth quantitative proteomics and the EU-funded project PRIME-XS, coordinated by Albert Heck, wherein amongst others Mann and Olsen participated and jointly provided access to their facilities to researchers in Europe and performed joint research projects.

The coordinating center in Copenhagen brings in expertise in clinical approaches and a network of clinical collaborators. The Heck group (University Utrecht) is a key partner in technology development for novel identification methods to be used in the analysis of modified proteins. The Cox group (Max Planck Institute of Biochemistry, Martinsried) complements the lab expertise with high-end bioinformatics. Together with the Mann group they have developed the most successful and industry standard MaxQuant platform for proteomics research worldwide. Makarov, being the inventor of the leading mass analyser and research director at Thermo Fisher complements the team, and has long standing relationship with all the academic partners. These earlier achievements lend credibility to the future success of the MSmed project.

Contact:
Dr. Anne Katrin Werenskiold
EU Office
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2601
E-Mail:kwerensk@biochem.mpg.de
www.biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage Max Planck Institute of Biochemistry

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Awards Funding:

nachricht MaterialVital Preis 2019 awarded for novel hydrogel wound dressings
05.09.2019 | Leibniz-Institut für Polymerforschung Dresden e. V.

nachricht Decoding cell communication
13.06.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>