Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel EU-funded collaborative proteomics project to bring proteomics to clinical application

22.12.2015

Novel proteomic technologies that are so robust and powerful that they can be used in every biological laboratory and in every clinic are expected as results of the currently starting research consortium MSmed. The European Commission is co-funding the project with 3.7 Million Euros for four years starting December 1, 2015 within the research line “Future and Emerging Technologies” under the Horizon 2020 Programme. MSmed will automate workflows in mass spectrometric analysis for proteomics research to prepare them for high-throughput clinical application.

Proteins are the major functional actors within cells and exert most of the cells’ functions. Over the past decade the analysis of the protein inventory of cells and tissues, the „proteome“, has made tremendous progress showing definite promise of mass spectrometry technology in the life sciences.


The MSMed team. Clockwise: Matthias Mann, Jesper Olsen, Albert Heck, Alexander Makarov und Jürgen Cox (middle).

© MPI of Biochemistry

To date proteome analysis is still a specialist technology and has not reached the robustness and availability for large-scale biomedical and clinical applications. In that respect it clearly lags behind genomic technologies that are, however, not applicable to protein based questions.

The MSmed project was initiated to tackle this issue. The vision of project coordinator Matthias Mann is “…to introduce proteome analysis by mass spectrometry as automated routine tool into the clinics”. Complementing current genetic methods with direct proteome analysis would allow measuring actual medical parameters as reflected in the patient’s proteome rather than solely genetic disposition.

Such a paradigm changing approach could transform personalized medicine, revolutionizing medical diagnosis and the assessment of efficacy of medical intervention on an individual basis.

To bring this vision into reality, a team was built around leaders in the proteomics field with a history of successful collaboration. They will bring in a broad range of experiences and expertise to master the various challenges lying ahead. These challenges include the development of novel instrumentation with drastically increased performance, the automation of sample preparation and analysis, the adaptation of analysis protocols to the characteristics of clinical samples, and the development of comprehensive software for extensive in-depth analysis of the large amounts of data obtained.

When successful, MSmed will establish mass spectrometry based proteomics in systems medicine, making all workflows and mass spectrometry platforms available to the community. These workflows will be used as the basis of myriad applications in biomedicine, even in the clinic. This in turn will lead to a new eco-system around improved diagnosis, elucidations of disease mechanisms and drug action.

The MSmed team
The coordinating Mann group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen and Max Planck Institute of Biochemistry, Martinsried), the Olsen group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen) , the Cox group (Max Planck Institute of Biochemistry, Martinsried), the Heck group (Utrecht University) and Makarov from the industrial partner Thermo Fisher Scientific, are all leaders in the field and have a longstanding collaboration concerning the improvement of instrumentation in mass spectrometry, with the aim to make it accessible to all researchers. One example is the earlier EU-funded project PROSPECTS, which was also coordinated by Matthias Mann, where Mann, Olsen, Cox and Makarov jointly invented novel technology for in depth quantitative proteomics and the EU-funded project PRIME-XS, coordinated by Albert Heck, wherein amongst others Mann and Olsen participated and jointly provided access to their facilities to researchers in Europe and performed joint research projects.

The coordinating center in Copenhagen brings in expertise in clinical approaches and a network of clinical collaborators. The Heck group (University Utrecht) is a key partner in technology development for novel identification methods to be used in the analysis of modified proteins. The Cox group (Max Planck Institute of Biochemistry, Martinsried) complements the lab expertise with high-end bioinformatics. Together with the Mann group they have developed the most successful and industry standard MaxQuant platform for proteomics research worldwide. Makarov, being the inventor of the leading mass analyser and research director at Thermo Fisher complements the team, and has long standing relationship with all the academic partners. These earlier achievements lend credibility to the future success of the MSmed project.

Contact:
Dr. Anne Katrin Werenskiold
EU Office
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2601
E-Mail:kwerensk@biochem.mpg.de
www.biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage Max Planck Institute of Biochemistry

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>