Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nikolaus Rajewsky of the MDC to Receive the Leibniz Prize - Highest Honor Awarded in German Research

14.12.2011
Professor Nikolaus Rajewsky of the Max Delbrück Center for Molecular Medicine (MDC) Berlin is to receive Germany’s most prestigious research award, the Gottfried Wilhelm Leibniz Prize.

The announcement was made by the German Research Foundation (DFG) on Thursday, December 8, 2011. This is the second time the prize will go to the MDC. In 2002 Professor Carmen Birchmeier received the award. In 2012 the prize will be awarded to a total of eleven scientists: two women and nine men were selected from among 131 nominations. The Leibniz Prizes, each endowed with up to 2.5 million euros, will be presented in an award ceremony in Berlin on February 27, 2012.

Nikolaus Rajewsky is Professor of Systems Biology at the MDC and the Charité and Scientific Director of the “Berlin Institute for Medical Systems Biology” (BIMSB) at the MDC. Systems biology combines molecular biology, biochemistry, mathematics and physics in order to quantitatively capture and predict complex processes of life. Professor Rajewsky’s research activities focus mainly on microRNAs, a group of genes discovered only a few years ago. As Nikolaus Rajewsky has demonstrated experimentally and with the aid of bioinformatics, microRNAs play an important role in the regulation of genes, including those that play a crucial role in the development of diseases. This discovery opens up a huge field of potential applications, including target structures for novel therapy approaches.

In addition, Professor Rajewsky and his group have also made important methodological and technological advances. Together with his colleague Marc Friedländer, he developed a computer-based method with which microRNA molecules can be identified. In an innovative research collaboration at the MDC, Professor Nikolaus Rajewsky and Professor Matthias Selbach demonstrated how microRNAs regulate the activity of genes and thus steer the production of thousands of proteins. Another accomplishment, achieved together with developmental biologists of New York University, was to develop a method with which large numbers of nematodes (C. elegans), an important model organism in biology, can be studied during various stages of embryonic development.

Furthermore, together with researchers in the U.S. and Canada, he compiled a catalogue of microRNAs of planarian flatworms, and there also identified microRNAs which could play a role in the regeneration and function of stem cells. Freshwater planarian flatworms possess the capacity to regenerate into completely new, viable individuals from any cut-off body part. This regeneration is mediated by totipotent adult stem cells. Consequently, planarian flatworms are the object of intense research in the lab of Nikolaus Rajewsky.

Nikolaus Rajewsky studied mathematics and physics at the University of Cologne, Germany from 1988 - 1993, where he earned his PhD in theoretical physics in 1997. In the fall of 1998, he went to the USA as a post-doctoral fellow, first at Rutgers University in New Jersey, and, from 1999 - 2002, at Rockefeller University in New York, where he later became Research Assistant Professor and, in 2003, Assistant Professor at New York University. From 1991 to 1996 he also studied music (piano) at the Folkwang Academy in Essen (Germany), where he graduated with an artist diploma (künstlerische Reifeprüfung).

Professor Rajewsky has already received numerous awards for his work, among these in 2010 the Science Prize of the Governing Mayor of Berlin. Also in 2010 he was elected to be a member of the European Organization for Molecular Biology (EMBO). In 2008 he was named Global Distinguished Professor of Biology at New York University.

The Berlin Institute for Medical Systems Biology (BIMSB) was founded in 2008 by the MDC with pilot funding of the Federal Ministry of Education and Research and the Senate of Berlin on Campus Berlin-Buch. The BIMSB collaborates closely with other research institutions, in particular with Humboldt University Berlin and Charité – Universitätsmedizin Berlin and in the U.S. with New York University (NYU) and Rockefeller University. In addition, through the initiative of Professor Rajewsky, the BIMSB offers a joint PhD program with NYU and the MDC.

In 2015 the BIMSB will move into a new building on the north campus of Humboldt University. The new building, which is being financed by the Senate of Berlin with approximately 30 million euros, will provide 5 500 m² of space for around 300 employees. The annual operating costs amounting to approximately 20 million euros is shared by the Federal Ministry of Education and Research (90 percent) and by the Berlin Senate (10 percent).

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.dfg.de/en/index.jsp
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht 9.1 million euros for trinational quantum research
07.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht 6.7 Million Euros for Microsystems Engineering Project
05.02.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>