Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Million funding for Polymer Research

30.09.2013
Two ERC Advanced Grants for directors of the Max Planck Institute for Polymer Research

The European Research Council (ERC), an institution established by the EU Commission, announced on 26th September 2013 in Brussels that Professor Hans-Jürgen Butt and Professor Kurt Kremer, two directors at the Max Planck Institute for Polymer Research (MPI-P) in Mainz, will each be awarded an ERC Advanced Grant.

They will be granted research funds amounting to respectively some €2.5 million and some €2 million for the next five years. The ERC Advanced Grant aims, in contrast to other funding schemes of the Research Council, to support exceptional established research leaders to pursue new ambitious scientific projects - which had been given little or no attention so far - involving ground-breaking research topics.

Both Hans-Jürgen Butt and Kurt Kremer enjoy an excellent reputation in their areas of expertise among the scientific community.

Physics at Interfaces is director Hans-Jürgen Butt’s focal research theme. He has been leader of the same-named 65-headed work group at the MPI-P since 2002. In 2011 Butt and his team for the first time succeeded in obtaining superamphiphobic surfaces on which all liquids – even heavily wetting ones like oil and blood – roll off without leaving traces. Accountable for this is their nanostructure, which resembles that of candle soot, and consists of the smallest beads visible only under an electron microscope. The physicists in Butt’s team are working towards expanding this principle to new applications. Work has already been done successfully on membranes whose surface structure is optimal for filters separating gases like CO2 from liquids. Efficient gas exchange through such membranes enables high concentration of oxygen in blood. Life-saving heart-lung machines could thereby work more efficiently. "The ERC grant allows us to tackle several fundamental physical problems which currently limit applications" says Hans-Jürgen Butt. "We physicists may know the detailed structure of nuclear particles but we are still far away from understanding how a simple liquid wets a nanostructured surface".

As a director at the MPI-P since 1995, Professor Kurt Kremer devotes himself to the theoretical and, in particular, computer-aided research of soft condensed matter physics, i.e. a form of organic materials that often cannot be clearly defined as solid or liquid. The research interests of the "Polymer Theory" group range from polymer networks over gels and biopolymers to organic electronics. With computer-based simulations and modelling calculations the members of Kremer’s group are able to predict materials’ behaviour and their properties. The big challenge consists in accurately predicting dynamic processes in a non-equilibrium state, for instance crystallization processes. In turn, these results enable specific prediction of the properties of new materials and proposal of manufacturing processes. The ERC is now supporting Kurt Kremer's long-term objective: The development of an integrated simulation tool. This instrument should enable statements to be made on a large scale from chemical building blocks to the behaviour of whole macromolecular systems in non-equilibrium states. Such a method would be a fundamental device for the material design of the future.

This funding decision announced by the European Research Council not only stresses the potential but also shows recognition of the fundamental research conducted at the MPI-P.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks internationally among the leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both synthesis and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. The beginning of 2013 saw a total of 551 people working at the MPI-P. The work force was constituted of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists and 195 technical, administrative and auxiliary staff.

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>