Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Max Planck Society awards Dr. Christof Weitenberg the Otto Hahn Medal

13.06.2012
Dr. Christof Weitenberg, a former PhD student in the group of Professor Immanuel Bloch at the Max Planck Institute of Quantum Optics in Garching near Munich, has been awarded the Otto Hahn Medal 2011 of the Max Planck Society (MPG).
Since 1978 the MPG honours about 40 young scientists each year for their outstanding scientific achievements. The award is meant to encourage highly talented people to pursue a career in fundamental research. Dr. Weitenberg receives the medal, which comes with a monetary recognition, for “his work on the realization of a quantum gas microscope and on the addressing of single atoms in ultracold quantum gases”.

Christof Weitenberg was born in Rhede in 1981 (NRW, Germany). In 2001 he began his studies of physics at the Universität des Saarlandes in Saarbrücken, at the same time registering in musical composition at the Hochschule für Musik Saar, where he got his diploma in 2005. As a scholar of the “Studienstiftung des deutschen Volkes” he completed his physics studies in 2007 with a diploma. He started his doctoral thesis in the group of Professor Immanuel Bloch, who at that time had a chair in physics at the Johannes Gutenberg-Universität Mainz.

After Professor Bloch had been appointed director at the MPQ in 2008, he continued his doctoral work on “Single-atom-resolved imaging and single-spin addressing in an atomic Mott insulator” at the institute in Garching. In 2011 Christof Weitenberg received his doctoral degree from the Ludwig-Maximilians-Universität with “summa cum laude”. Subsequently, he became a fellow of the Alexander von Humboldt-Foundation and moved to the Laboratoire Kastler Brossel, Ecole Normale Supérieure (ENS) in Paris to the group of Jean Dalibard. This year he obtained a Marie Curie-Fellowship of the European Union.

The central subject of his thesis was the detection and the manipulation of single atoms of an ultracold atomic quantum gas. The cold atoms are sitting in an artificial crystal of light, which is created by the superposition of several laser beams. They serve as a well-controlled model system for electrons in a solid-state material. Just like the electrons, the atoms can e.g. either freely move through the lattice or be pinned to their lattice site due to their mutual interaction. The latter case is called a Mott insulator.

Within his thesis work in the team of Professor Immanuel Bloch and Professor Stefan Kuhr (now at University of Strathclyde, Glasgow) Christof Weitenberg developed techniques that for the first time allowed imaging single atoms in this Mott insulator. In this way, the researchers could directly observe the distribution of the atoms on the lattice sites, which characterizes the respective state of the quantum gas. Furthermore, it was possible to address and manipulate single atoms with the help of a strongly focused laser beam – a vital step towards a quantum computer built of cold atoms.

At the ENS, Weitenberg now studies the behaviour of the cold quantum gases in the presence of an artificial magnetic field.

Dr. Weitenberg will receive the Otto Hahn Medal on the occasion of the General Meeting of the Max Planck Society in Düsseldorf on June 13, 2012. [Olivia Meyer-Streng]

Contact:
Dr. Christof Weitenberg
Laboratoire Kastler Brossel
Ecole Normale Supérieure
24, rue Lomond
75005 Paris, France
Phone: +33 (0)1 / 44 32 33 07
E-mail: christof.weitenberg@lkb.ens.fr

Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Muscle Growth in the Computer: International Team Wants to Unravel the Formation of Myofibrils
13.06.2018 | Technische Universität Dresden

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>