Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LandKlif: Changing Ecosystems

06.07.2018

How does climate change affect biodiversity and ecosystem performance in Bavaria? Which strategies can counteract the impacts? The new Bavarian research alliance "LandKlif" seeks to answer these questions.

Bavaria is changing: In regions such as Lower Franconia, climate change is producing drier and hotter conditions. At the same time, extreme weather gets a boost with heavy rainfall or hail leading to flooding and soil erosion.


A butterfly (pale clouded yellow, Colias hyale) on a chalk heath in Lower Franconia. This habitat with its species-rich insect communities is at a special risk in Bavaria because of nitrogen input.

Photo: Ingolf Steffan-Dewenter


Professor Ingolf Steffan-Dewenter coordinates the Bavaria-wide LandKlif research alliance which comprises ten subprojects.

Photo: Susanne Schiele

The landscape is changing, too: More impervious surfaces are being generated as a lot of villages built their own industrial zones. Vast monocultures of maize and rapeseed prevail on fields; this is aggravated by the widespread use of fertilizers and pesticides.

Biodiversity is dwindling, especially that of insects whose number and diversity have decreased. This will have serious implications since the yield and quality of many food crops depend on pollinating insects. Moreover, insects play a vital role in natural pest control. Their decline impairs the services which humans gain from ecosystems.

A scientific challenge

"All these changes present a major challenge for scientists," says Professor Ingolf Steffan-Dewenter, Head of the Chair of Animal Ecology and Tropical Biology at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany. An interdisciplinary collaborative approach is needed to address the many open questions.

How do climatic differences and the structure of a landscape influence biodiversity and ecosystem performance? How do climatic conditions and land use interact? Does biodiversity at the level of populations, communities and landscapes mitigate the consequences of climate change and extreme weather events?

LandKlif: Four of ten subprojects at JMU

The new Bavarian research alliance "LandKlif" will investigate these issues with activities in 20 natural, agricultural and urban landscapes in five climate zones in Bavaria: from the dry and warm regions in Lower Franconia to the high altitudes of the Bavarian Forest National Park and Berchtesgaden. The goal is to identify options to mitigate the effects of climate change and adapt to changed climatic conditions.

Professor Steffan-Dewenter coordinates the alliance which comprises four research groups from the University of Würzburg, two from the Weihenstephan-Triesdorf University,
two from the Technical University of Munich and one from the universities of Augsburg and Bayreuth, respectively. The Free State of Bavaria funds the alliance with a total of EUR 2.6 million of which EUR 1.4 million are allocated to JMU.

Measuring biodiversity and ecosystem performance

Subproject 1, headed by Professor Ingolf Steffan-Dewenter, measures the biodiversity of bees, wasps, hoverflies, beetles and butterflies as well as ecosystem performance in the area of pollination and biological best control. The researchers will perform relocation experiments and simulate extreme weather events to better understand the adaptation ability and resilience of major insect groups. The results could later be used to develop more sustainable management practices for the Bavarian ecosystems.

Simulating climate scenarios and drought stress

Subproject 2 is led by Professor Jörg Müller from the JMU Chair of Animal Ecology and Tropical Biology. Its mission is to determine the quantity and diversity of arthropod communities – arthropods are a large group of animals that include insects – at 240 sites throughout Bavaria in habitats with different microclimates. The collected data will be used to model predictions for various climate scenarios. Moreover, the scientists will simulate drought stress on some areas and perform experiments in environmental chambers.

Landscape types and adaptability

PD Dr. Thomas Hovestadt, Chair of Animal Ecology and Tropical Biology, is in charge of subproject 6. His team will study the tolerance and adaptability of biological communities in the face of climate change. By running computer simulations, the research group wants to understand the role landscape plays in the adaptation of populations and biological communities and which landscape elements are particularly important in this context. Ultimately, their work could help identify strategies and management practices to mitigate the negative impacts of climate change on ecosystem performance.

Investigating vegetation with satellite data

PD Dr. Christopher Conrad from the Chair of Remote Sensing leads subproject 7. This project is about measuring the development of the vegetation in natural, agricultural and urban landscapes in Bavaria over the past 20 years based on satellite data. The goal is to determine which landscape parts are more vulnerable or resilient to climate changes. They also analyse yields, cultivation patterns and diversity in the agricultural landscapes. The project's aim is to recognize detrimental impacts on ecosystem performance at any early stage and support counter-measures.

Bavarian network for climate research

The LandKlif research alliance is part of the Bavarian network for climate research (bayklif) launched officially by Minister of Science, Marion Kiechle, in early May 2018. The network is set to produce more insights into the social and ecological consequences of climate change. Building on this knowledge, models will have to be developed to help mitigate these consequences. Moreover, bayklif aims to develop regional and supraregional strategies for climate protection and adapting to climate change.

Contact

Prof. Dr. Ingolf Steffan-Dewenter, Chair of Animal Ecology and Tropical Biology, University of Würzburg, T 49 931 31-86947, ingolf.steffan@uni-wuerzburg.de

Weitere Informationen:

https://www.bayklif.de/verbundprojekte/landklif/ Website of the LandKlif research alliance

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>