Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly understanding the Brain: 2. Transatlantic Collaborations round in Computational Neuroscience

21.12.2011
Collaborations between Germany and the United States in the field of Computational Neuroscience are being expanded. Six new projects will be funded in the coming three years by a total of 2.6 million Euros.

The projects are characterized by close links between experimental and theoretical approaches in exploring the brain. This is the second funding round of a joint German-American funding initiative by the German Federal Ministry for Education and Research (BMBF), the National Science Foundation (NSF) and the National Institutes of Health (NIH).

The funded projects investigate the following topics:

Abnormal long-lasting neuronal discharges in the cerebral cortex are suspected to be responsible for migraine attacks. Dr. Markus Dahlem from the Technische Universität Berlin wants to find out together with colleagues at Pennsylvania State University, State College, whether these discharges can be controlled by the influence of electric fields in a closed loop. This will be investigated in computer as well as in animal models.

Patterns of brain activity that are measured with imaging techniques differ between individuals, even for identical stimulations. In collaboration with colleagues from Dartmouth College, Hanover, and Princeton University, Princeton, Dr. Michael Hanke of the Otto von Guericke University Magdeburg wants to develop new methods to improve comparability. These methods would allow analysis of individual patterns and transformation between these patterns. Thus, even intrinsic processes such as social cognition should become comparable.

How does the brain perfectly accomplish the task of reconstructing the three-dimensional world from a two-dimensional image on our retina? Prof. Roland Fleming, Justus-Liebig-University, Giessen, and his colleagues at Yale University, New Haven, examine whether cells that recognize the intensity patterns of images enable us to experience a three-dimensional perception of the world. This will be investigated using psychophysical experiments and computer models.

Sensory systems must highly efficiently filter complex characteristics and patterns from a huge amount of information. How this takes place in the olfactory bulb, Dr. Andreas Schaefer of the Max Planck Institute for Medical Research, Heidelberg, wants to examine jointly with researchers from Cornell University, Ithaca. Among other things, they will investigate the functional role of inhibitory cells during contrast enhancement of information, using optogenetic methods.

How are the function and the dendritic structure of a nerve cell coupled? This is what Prof. Stefan Remy from the German Centre for Neurodegenerative Diseases, Bonn, wants to find out in collaboration with scientists from Northwestern University, Evanston, Stanford University, Stanford, and the Janelia Farm Research Campus HHMI, Ashburn. Using a combination of new microscopic techniques, they will study cells from the hippocampus that play an important role in memory and other cognitive processes.

How is the brain able to successfully perform many different tasks with the same neurons? Prof. Cornelius Schwarz of the Werner Reichardt Centre for Integrative Neuroscience, Tübingen, will examine this question in collaboration with scientists at Georgia Tech and Emory University, Atlanta, using the example of the rat’s whisker system. Neuronal coding will be described with the help of statistical models and the researchers will try to show how sensory tasks can be adapted to current perceptional requirements.

In 2010, five projects were chosen for the first funding round, in which a total of 3.4 million Euros was invested. In Germany, the projects are integrated into the National Bernstein Network for Computational Neuroscience (NNCN).The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of Computational Neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Johannes Faber | idw
Further information:
http://www.nncn.de/

More articles from Awards Funding:

nachricht ESJET printing technology for large area active devices awarded
11.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Pushing digital process optimization
02.04.2019 | Technische Universität Chemnitz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>