Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative tissue analysis: Munich spin-off project receives Helmholtz funding

26.06.2018

A total of 200,000 euros has been granted to the spin-off project Theraselect. The Helmholtz Association and Helmholtz Zentrum München will each provide half the funding for the designated spin-off. The project centres around a mass spectrometry imaging method that makes thousands of molecules visible in tissue samples.

Examining tissue samples is an essential tool for investigating diseases and is a mainstay in the field of diagnostics. Conventionally, tissue is fixed, sliced into thin sections, placed on a microscope slide, stained and examined under a microscope. Besides tissue structures, individual molecules can also be marked and visualized.


With the new technology a kind of molecular map can be created.

Source: Helmholtz Zentrum München

“However, mass spectrometry imaging can augment the information content of such tissue sections to cover thousands of analytes in situ*,” explains Prof. Axel Walch, Head of the Research Unit Analytical Pathology at Helmholtz Zentrum München.

For mass spectrometry imaging, a tissue slide is raster-scanned with a laser and at each point a mass spectrum is recorded. The recorded spectra represent the information of the individually measured molecules site-specifically in the tissue.

From the totality of the spectra a kind of molecular map can be created. Now, the funding is intended to lead to the widespread use of this technology. “The focus will be on new diagnostic and pharmacological tests to improve the treatment of cancer patients,” explains applicant Dr. Achim Buck. “Our goal is to bring about a change in the approach to tissue-based diagnostics and research.”

Improved treatment of cancer patients

The team led by Axel Walch sees a range of applications for the new analytical method, as it can be used to visualise and objectively measure both endogenous and exogenously introduced substances in the body. “For example, we’re able to detect drugs and their degradation products in tissue,” Achim Buck explains.

“Currently, much of what we know about pharmacology, toxicity, pharmacokinetics and drug interactions is gained from the study of surrogates, such as blood samples or tissue homogenates**. While this approach is pragmatic, it does not reflect the actual molecular situation in the tissue.“

In addition, the imaging experts are able to identify molecular patterns relevant to specific diseases. Therefore, they see potential applications in the fields of drug analysis, diagnostics and therapy prediction in personalized medicine.

The latter aims to base treatment decisions on predictive markers and to tell in advance whether a patient will respond to a treatment. “The site-specific detection of previously undetectable, treatment-relevant molecules can set new standards in diagnostics,” Achim Buck concludes.

The Helmholtz Association is funding the spin-off through the Helmholtz Enterprise Programme with 100,000 euros. A further 100,000 euros will be contributed by Helmholtz Zentrum München.

Further Information

* In situ (Latin for “on site”) is a Latin term meaning “in the original position”. Specifically, it refers to the natural spatial distribution of molecules in tissues.

** Tissue homogenate: Tissue is destroyed by physical or chemical comminution, and its cellular contents (homogenate) are released. Although this allows analysis of the cellular components, the spatial distribution of individual molecules in the tissue is lost.

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The independent Research Unit Analytical Pathology (AAP) carries out scientific development, as a complement to research units with a clinical and fundamental orientation, of translational research on diseases that occur in tissue. AAP is involved in the translation of (for example) in-vitro models or animal models to application in humans. AAP thus links basic research with diagnostic application, subsequently translating the findings of experimental and molecular pathology into procedures for the classification of diseases and predictive diagnostics dealing with tissue. http://www.helmholtz-muenchen.de/aap

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Tel. +49 89 3187 2238, E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Achim Buck, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Analytical Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187-4133, E-mail: achim.buck@helmholtz-muenchen.de

Prof. Dr. Axel Karl Walch, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Analytical Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg - E-mail: axel.walch@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Awards Funding:

nachricht 9.1 million euros for trinational quantum research
07.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht 6.7 Million Euros for Microsystems Engineering Project
05.02.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>