Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative tissue analysis: Munich spin-off project receives Helmholtz funding

26.06.2018

A total of 200,000 euros has been granted to the spin-off project Theraselect. The Helmholtz Association and Helmholtz Zentrum München will each provide half the funding for the designated spin-off. The project centres around a mass spectrometry imaging method that makes thousands of molecules visible in tissue samples.

Examining tissue samples is an essential tool for investigating diseases and is a mainstay in the field of diagnostics. Conventionally, tissue is fixed, sliced into thin sections, placed on a microscope slide, stained and examined under a microscope. Besides tissue structures, individual molecules can also be marked and visualized.


With the new technology a kind of molecular map can be created.

Source: Helmholtz Zentrum München

“However, mass spectrometry imaging can augment the information content of such tissue sections to cover thousands of analytes in situ*,” explains Prof. Axel Walch, Head of the Research Unit Analytical Pathology at Helmholtz Zentrum München.

For mass spectrometry imaging, a tissue slide is raster-scanned with a laser and at each point a mass spectrum is recorded. The recorded spectra represent the information of the individually measured molecules site-specifically in the tissue.

From the totality of the spectra a kind of molecular map can be created. Now, the funding is intended to lead to the widespread use of this technology. “The focus will be on new diagnostic and pharmacological tests to improve the treatment of cancer patients,” explains applicant Dr. Achim Buck. “Our goal is to bring about a change in the approach to tissue-based diagnostics and research.”

Improved treatment of cancer patients

The team led by Axel Walch sees a range of applications for the new analytical method, as it can be used to visualise and objectively measure both endogenous and exogenously introduced substances in the body. “For example, we’re able to detect drugs and their degradation products in tissue,” Achim Buck explains.

“Currently, much of what we know about pharmacology, toxicity, pharmacokinetics and drug interactions is gained from the study of surrogates, such as blood samples or tissue homogenates**. While this approach is pragmatic, it does not reflect the actual molecular situation in the tissue.“

In addition, the imaging experts are able to identify molecular patterns relevant to specific diseases. Therefore, they see potential applications in the fields of drug analysis, diagnostics and therapy prediction in personalized medicine.

The latter aims to base treatment decisions on predictive markers and to tell in advance whether a patient will respond to a treatment. “The site-specific detection of previously undetectable, treatment-relevant molecules can set new standards in diagnostics,” Achim Buck concludes.

The Helmholtz Association is funding the spin-off through the Helmholtz Enterprise Programme with 100,000 euros. A further 100,000 euros will be contributed by Helmholtz Zentrum München.

Further Information

* In situ (Latin for “on site”) is a Latin term meaning “in the original position”. Specifically, it refers to the natural spatial distribution of molecules in tissues.

** Tissue homogenate: Tissue is destroyed by physical or chemical comminution, and its cellular contents (homogenate) are released. Although this allows analysis of the cellular components, the spatial distribution of individual molecules in the tissue is lost.

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The independent Research Unit Analytical Pathology (AAP) carries out scientific development, as a complement to research units with a clinical and fundamental orientation, of translational research on diseases that occur in tissue. AAP is involved in the translation of (for example) in-vitro models or animal models to application in humans. AAP thus links basic research with diagnostic application, subsequently translating the findings of experimental and molecular pathology into procedures for the classification of diseases and predictive diagnostics dealing with tissue. http://www.helmholtz-muenchen.de/aap

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Tel. +49 89 3187 2238, E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Achim Buck, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Analytical Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187-4133, E-mail: achim.buck@helmholtz-muenchen.de

Prof. Dr. Axel Karl Walch, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Analytical Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg - E-mail: axel.walch@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>