Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humboldt Research Award for Nobel Laureate Aaron Ciechanover - Host Institution is the MDC

07.12.2011
The Israeli Nobel Laureate Aaron Ciechanover has been named one of the recipients of the Humboldt Research Award of the Alexander von Humboldt Foundation (AvH). His host institution in Germany shall be the Max Delbrück Center (MDC) in Berlin, a member of the Helmholtz Association.

Professor Ciechanover is a physician and biologist and conducts research at the Technion – Israel Institute of Technology in Haifa. AvH in Germany awards this prize to internationally renowned scientists and scholars in recognition of their entire achievements to date, and whose fundamental discoveries, theories, or insights have had a significant impact on their discipline. The award is valued at 60,000 euros.

At the MDC Professor Ciechanover will cooperate in particular with the research group led by Professor Thomas Sommer. There he will work in joint projects on the disposal of misfolded proteins. This cooperation will enable the MDC to intensify its contacts with Israeli scientists and in particular with the Technion.

Professor Ciechanover is one of the discoverers of the ubiquitin-proteasome system for regulated protein degradation. One of the main functions of the system is waste disposal. In 2004 he shared the Nobel Prize in Chemistry for this discovery with Avram Hershko and Irwin Rose. This quality control maintenance system selectively disposes misfolded/denatured/inactive proteins that, if accumulated, can cause cellular damage. Thus, only proteins that are marked with ubiquitin are recognized and enter the proteasome, the molecular shredder of the cell. There they are chopped into pieces and degraded. Ubiquitin, as the name (ubiquitous) implies, is present in all eukaryotic (nucleated) cells.

Aberrations in this cellular waste disposal machinery can lead to a wide array of diseases, ranging from cancer to neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, genetic diseases such as cystic fibrosis, and disorders of the immune system. The research on the ubiquitin-proteasome system and the identification of the components involved in the degradation of key proteins has already led to the development of a new cancer drug. Aaron Ciechanover is convinced that this research will lead to the development of many additional drugs that will selectively target only proteins that are involved in a specific disease process.

Aaron Ciechanover was born in Haifa, Israel in 1947. He received his MD degree from Hebrew University of Jerusalem in 1975, and his PhD in Biology from Technion in 1982. He is currently Distinguished Professor at the Cancer and Vascular Biology Research Center in the Rappaport Research Institute and Faculty of Medicine, Technion – Israel Institute of Technology. Prior to receiving the Nobel Prize he was a recipient of the 2000 Albert Lasker Award and the 2003 Israel Prize. He is a member of the Israeli Academy of Sciences and Humanities, and the National Academy of Sciences of the USA (Foreign Member).

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.technioncancer.co.il/ResearchGroups.php
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>