Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Innovation Awards 2011: Revolutionary temperature measurement with optical fibers named top innovation

16.11.2011
Best Process Innovation: Efficient method for producing quartz glass tubes for silicon wafers

At the ninth annual Heraeus Innovation Awards, presented in Hanau in mid-November, first prizes were awarded to a new temperature measurement device for the aluminum industry and an efficient process for manufacturing large quartz glass tubes for silicon wafers.


Heraeus Innovation Awards 2011 (from left): Jan Rinnert (Vice Chairman of the Heraeus Holding Board of Management), Dr. Tanja Eckardt (Heraeus Innovation Management), Michael Hahn (Best Process Innovation), Nicole Gübler (3rd place Product), Jan Cuypers (Best Product Innovation), Dr. Frank Heinricht (Chairman of the Heraeus Holding Board of Management), Dr. Stephan Kirchmeyer (2nd place Product), Dr. Wulf Brämer (Heraeus Innovation Management)

The winner of the product innovation award was Jan Cuypers, a Developer in the sensors business group (Heraeus Electro-Nite), who revolutionized measurement technology with FiberLance™, which directly and precisely measures molten media temperatures in industrial furnaces used for aluminum manufacturing. Quartz glass fibers connected to light detecting sensors are used for temperature measurement instead of industry-standard thermocouples and pyrometers. Michael Hahn, Production Manager at Heraeus Quarzglas, won the award for process innovation thanks to a lowcost, flexible, globally standardized manufacturing process for largediameter quartz glass tubes. These tubes are stable at high temperatures in process chambers and are used in the production of silicon wafers (300- mm wafer technology) for microchips and to manufacture solar cells.

The runner-up in product innovation was Dr. Stephan Kirchmeyer of Heraeus Precious Metals, who succeeded in creating the first invisible electrical functional coatings on flexible touch screens, for example for smartphones, with an innovative combination of conductive polymers (Clevios) and recently developed etching technology. Nicole Gübler, a Developer at Heraeus Materials Technology, took third place in product innovations with a ceramic protective layer for sealing platinum components in the glass industry.

The Innovation Award has recognized excellence since 2003

The prizewinners were honored by Dr. Frank Heinricht, Chairman of the Heraeus Holding Board of Management, and Jan Rinnert, Vice Chairman of the Heraeus Holding Board of Management, at a ceremony in Hanau. "Heraeus has been successfully writing industrial history for 160 years, with both product and process innovations. There are people behind these innovations: our colleagues in research, development, application technology, and engineering. Your innovations are essential to our success," said Dr. Frank Heinricht, thanking the winners.

The Heraeus Innovation Award was launched in 2003. All Heraeus researchers and developers worldwide are eligible to participate. More than 190 product innovations have been submitted since 2003, and a total of 29 products and processes have been honored. This year, 21 projects were in the running. "Our Innovation Awards recognize top performance that contributes to the company’s success and have a motivating effect. The developers can be very proud of their innovations," emphasized Dr. Tanja Eckardt, Head of Innovation Management at Heraeus.

Best Product Innovation: Revolutionary temperature measurement – Glass fibers conquer the aluminum bath

Aluminum is favored the world over as a light metal by the automotive, aircraft, and packaging industries. Precise temperature control is essential to its manufacture. Fast, accurate temperature measurement of the aluminum bath (electrolysis), means a more energy efficient manufacturing process. Heraeus Electro-Nite Developer Jan Cuypers and his team have come up with a true innovation in measurement technology. Instead of utilizing industry-standard thermocouples, the sensor experts offer temperature measurement with optical fibers.

FiberLance™ was developed to directly and precisely measure bath temperatures in industrial furnaces for primary aluminum manufacturing. The measurement system uses new technology: an optical fiber connected to a light detecting sensor. The quartz glass optical fiber is consumed during measurement, but since it is supplied in 100 m lengths on a plastic drum, companies can perform up to 10,000 bath temperature measurements without recalibrating the device. The new measurement technology is enabling the sensor specialists at Heraeus to enter new territory. "Optical fibers are new for us, but expanding into this area is a logical complement to our temperature sensor products for the steel industry. We collaborated with a British research institute, and also internally with the specialty fibers group at Heraeus Quarzglas," said Jan Cuypers, enthusiastic about the award.

Best Process Innovation: A cost-effective process for manufacturing large-diameter quartz glass tubes for the semiconductor industry

The ultrapure high-tech material quartz glass has become indispensable in the production of optical fibers for the telecommunications industry, semiconductors, and solar cells for photovoltaics. Microchips are made from silicon wafers with a diameter of 300 millimeters. Large-diameter quartz glass tubes play a key role in manufacturing these wafers. These tubes are stable at high temperatures and are needed for numerous steps performed in process chambers. Thanks to a process innovation by Michael Hahn and an international team of developers, Heraeus Quarzglas can manufacture large-diameter quartz glass tubes for 300-mm wafer technology even more cost effectively and efficiently. "With this unique, flexible process and globally standardized reshaping processes, we have considerably reduced the process steps compared to the previous procedure. This innovation allows us to make even larger tubes for the next generation of silicon wafers, which are based on 450-mm technology," emphasizes Production Manager Michael Hahn.

Product innovation – second place: Clevios – organic electronics for touch screens

Under the brand name Clevios™, Heraeus produces conductive polymers that take the form of bluish dispersions; they form electrical functional coatings and are finding more and more areas of application in our daily lives. Flexible touch screens for smartphones and tablet PCs represent one new, extremely promising use. These intuitive user interfaces are based on innovative microelectronics on thin films with conductive coatings. With a combination of various conductive polymers and a newly developed etching technology, Dr. Stephan Kirchmeyer, Head of the Functional Coatings Business Unit, and a team of developers from the Heraeus Conductive Polymer Division have succeeded in making these functional films on touchscreens completely invisible to the human eye.

Modern touch screen technology requires specific structuring of the surface into conductive and nonconductive areas. The etching technology developed now replaces mechanical structuring by deactivating the conductivity without removing the polymer. This results in conductive structures that are completely invisible to the eye. "This invention is a breakthrough for us in the use of our conductive polymers," according to Stephan Kirchmeyer. "Now no one sees the color differences. Due to these new structuring possibilities, increasing numbers of touch screen manufacturers are interested in our conductive polymers."

Product innovation – third place: innovative platinum protection system lowers cost of manufacturing special glass

Because of their chemical resistance and high melting points, platinum and its alloys are used as a component material in the glass industry during the melting and manufacture of special glass (such as display panels) at high temperatures above 1400°C. The hotter the molten glass, the more efficiently high-quality glass can be refined and produced. The bad news: At the high temperatures used, platinum reacts with oxygen to form platinum oxides and evaporates from the surface of components. The higher the working temperature, the greater the evaporation rate, and the faster the component will be damaged and ultimately destroyed.

Nicole Gübler, Developer at Heraeus Materials Technology, described the challenge: "The customer wanted us to develop a platinum component that could be used at 1650°C for up to 8,000 hours without major boil-off losses. "She and her team developed an innovative ceramic layer that is applied like a second skin to seal the platinum component. This protective covering significantly inhibits the evaporation of platinum as platinum oxide and allows for a working temperature of 1650°C. Components in the worldwide glass industry contain more than 100 tons of platinum. This innovation helps reduce the processing and thus manufacturing costs for special glass while saving valuable resources.

Heraeus, the precious metals and technology Group headquartered in Hanau, Germany, is a global, private company with 160 years of tradition. Our fields of competence include precious metals, materials and technologies; sensors; biomaterials; and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.1 billion and precious metals trading revenues of €17.9 billion, as well as more than 12,900 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

For additional information, please contact:
Dr. Jörg Wetterau
Corporate Communications
Head of Technology Media & Innovation
Heraeus Holding GmbH
Heraeusstraße 12-14
63450 Hanau, Germany
Tel. +49 (0) 6181.35-5706
Fax + 49 (0) 6181.35-4242
E-mail: Joerg.wetterau@heraeus.com

Dr. Jörg Wetterau | Heraeus Holding GmbH
Further information:
http://www.heraeus.com

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>