Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz funds three new spin-off projects

11.02.2015

Quickly translating research findings into applications and thereby using them for social and commercial benefit is the aim of the Helmholtz Enterprise funding programme. Three new spin-offs from Helmholtz Centres have recently been approved for funding. 

The entrepreneurs receive seed capital of up to €260,000. Half of this comes from the Helmholtz Association’s Initiative and Networking Fund, while the other half is contributed by the centre involved. Since 2005, Helmholtz has funded 89 spin-off projects proposed by researchers. In particular, Helmholtz Enterprise provides these new businesses with security during the critical start-up phase.

“Taking good ideas for innovative products or services and developing a workable business model from them is always a major challenge,” says Rolf Zettl, Managing Director of the Helmholtz Association. He points out that the start-up phase is particularly difficult, because the necessary funding and staffing are often not in place.

“To enable the transfer from the laboratory to commercial application to succeed, we help scientists at our centres find their feet as entrepreneurs.” Helmholtz Enterprise funding is designed to bridge the gap that so often occurs in the first phase and to give founders the breathing space they need to further develop their business plans, Zettl explains. To boost the projects’ chances of success even more, Helmholtz also assists founders by providing advice from experienced experts.

The new projects being funded are:

1.) dermaSight – innovative imaging technique for dermatological and endoscopic applications
Commercial development of a new imaging tool for dermatological and endoscopic investigations is the subject of the planned dermaSight spin-off from Helmholtz Zentrum München. Using a new ultra-broadband optoacoustic mesoscopy technique it is possible to produce high-resolution 3D images that measure molecular and physiological parameters in real time. The major benefit for future users lies in fast and reliable diagnosis – which means, for example, that skin cancer can be detected earlier. The technique can also be used for purposes such as detecting bowel cancer and supporting surgical procedures. The dermaSight technology is particularly useful when used in conjunction with multi-spectral optoacoustic tomography: this has been made possible through cooperation with a business that had already successfully spun off from the Helmholtz Centre.

Contact: Prof. Vasilis Ntziachristos, Alexander Dima
Tel.: +49 (0)89 3187 3852
E-mail: v.ntziachristos@helmholtz-muenchen.de
Helmholtz Zentrum München – German Research Center for Environmental Health (HMGU)

2.) tacterion – tactile sensor systems for robotics and medical technology
Entrepreneurs at the German Aerospace Center are working on a polymer-based sensory surface that can be used as an “artificial skin”, for example for robot systems. Like its biological counterpart, artificial skin is able to detect contact forces and their spatial distribution. Its elastic and stretchable sensory surface combines seemingly incompatible properties – it is both highly sensitive and overload-proof. In addition, on account of its elasticity the artificial skin can be used on pliable and multiply curved surfaces. This enables, for example, the entire surface of parts of modern robotic arms to be fitted with a tactile sensor system. In future, this will make entirely new human/machine interfaces possible.

tacterion wants to help make the direct physical interaction between human and robot safe and intuitive by distinguishing between intended interactions and unintended collisions and ensuring that the robot system responds appropriately. The technology can also be used in medicine and in automobile manufacturing. Innovative manufacturing processes permit the size, spatial resolution and measuring range to be scaled to suit the customer’s needs and the artificial skin to be modified to meet the requirements of the specific application.

Contact: Dr Michael Strohmayr
Tel.: +49 (0)8153 283 359
E-mail: Michael.Strohmayr@dlr.de
German Aerospace Center

3.) TRIDEC Cloud – web-based platform for reliable assessment of hazard potential
The new platform designed by the start-up team at Helmholtz Centre Potsdam – German Research Centre for Geosciences (GFZ) aggregates scientific data and models, e.g. for weather or disaster forecasts, with the data and algorithms of customers primarily in the insurance sector. The cloud-based service can be tailored to specific customer needs and serves three different market segments. The first segment involves (re-)insurers and their clients. Here, the platform is used for risk assessment, vulnerability assessment and disaster analysis in relation to natural hazards. This enables insurance companies to improve the assessment of risk, offer preventive measures, and assist their clients with emergency preparedness and risk reduction. The second segment targets mainly scientists but is also aimed at customers in other areas who access the scientific algorithms and data and hence need to perform individual computations, e.g. for tsunami and earthquake research. The third branch involves early warning and disaster management of natural hazards. In the past, early warning systems have been based on isolated, individually developed software programs that are not interlinked and are frequently outdated. The new web-based platform is designed to consolidate the individual solutions into a uniform system, thereby improving disaster management at national and international level throughout the entire early warning chain.

Contact: Prof. Joachim Wächter
Tel.: +49 (0)331 288 1680
E-mail: wae@gfz-potsdam.de
Helmholtz Centre Potsdam GFZ ‒ German Research Centre for Geosciences

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 37.000 employees in 18 research centres and an annual budget of approximately 3.99 billion euros, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Janine Tychsen
Deputy Head Communications and Media Relations
Tel.: +49 (30) 206 329-24
janine.tychsen@helmholtz.de

Jörn Krupa
Director Technology Transfer
Tel.: +49 (30) 206 329-72
joern.krupa@helmholtz.de

Helmholtz Association
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin
Germany

Weitere Informationen:

http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>