Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg University researcher awarded Animal Welfare Prize of the German Research Foundation

19.03.2014

New methods for vascular research reduce number of experimental animals / Human umbilical cord cells mimic vessel walls

Professor Thomas Korff of the Department of Physiology and Pathophysiology at Heidelberg University, Germany, was awarded the German Research Foundation (DFG)’s Ursula M. Händel Animal Welfare Prize on March 20, 2014, at a ceremony in Berlin.


Professor Thomas Korff developed a model system for human blood vessels in the petri dish.

Photo: Heidelberg University Hospital

The physiologist investigates the formation and remodeling of blood vessels and has developed methods that minimize the distress experienced by animals and reduce the number of test animals. In certain areas, animal experiments can be replaced completely.

Professor Korff plans to use the prize money in the amount of 100,000 euros to refine his methods and standardize them so that they can be introduced and applied in other research laboratories without a great deal of effort.

Blood vessels in the petri dish

The award winner and his group study the processes and mechanisms in blood vessels that underlie normal development as well as pathological remodeling processes associated with, e.g. atherosclerosis or varicose veins. In order to use human cells for his experiments to the greatest extent possible, Korff has developed special culture methods.

To this end, he cultivates spherical cellular aggregates from cells that are isolated from the blood vessels of human umbilical cord after birth. These cell masses mimic two layers of the vessel wall. 

This model system for human blood vessels is not only well suited for basic research, but is now also being used in industrial applications. Scientists from Beiersdorf AG in Hamburg, Germany, are using the model system to test the protective effect of cosmetic substances on microscopic skin vessels. “Since we categorically excludeanimal testing, we use these kinds of realistic methods with human cells, which are especially significant for us,” said Dr. GittaNeufang, Head of Medical Management at Beiersdorf AG.

Test mice affected as little as possible

“However, cell cultures reach their limits for applications beyond cosmetics, for instance, if we want to find out how and why vessels undergo pathological changes,” Korff pointed out. In this case, it is not possible to avoid direct manipulations on animals, he clarified. “However, we have developed new surgical techniques that are much less stressful for the test animal than other proceduresused in vascular research.”

The new methods are easy to perform and mean less distress for the animals. “The animals behave normally and the success rate of the surgical procedures is higher. We need fewer animals for reliable results, which also reduces the costs,” he added.

For experiments on the living organism, the team often uses the ear of the mouse, in which the blood vessels are already clearly visible with the naked eye. The mouse ear is also easily accessible for many imaging techniquesand is suitable as a model for investigating many research questions. Without a single incision, for instance, a vein can be tied off in order to raise blood pressure in the afferent vessels.

In so doing, the formation of varicose veins can be simulated and their development observed over a period of several days. With this model, Korff investigates what signal pathways and molecules promote the pathological enlargement of the veins and whether certain substances can influence it. These kinds of studies are essential for identifying approaches for future therapeutic treatment.

In another project, the research group uses the mouse ear to investigate how tumors influence existing vessels or stimulate the formation of new vessels and, in so doing, can ensure their own blood supply. “Processes that are so complex can only be studied in live animals,” Korff explained.

Literature:
Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Demicheva E, Hecker M, Korff T. Circ Res. 2008 Aug 29;103(5):477-84.

Feldner A, Otto H, Rewerk S, Hecker M, Korff T. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 Oct;25(10):3613-21.

Navid F, Kolbe L, Stäb F, Korff T, Neufang G. UV-radiation induces the release of angiopoietin-2 from dermal microvascular endothelial cells. ExpDermatol. 2012 Feb;21(2):147-53.

More information is available on the Web:
Working group Professor Thomas Korff: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Gruppe-Korff.110926.0.htm...
Ursula M. Händel Animal Welfare Prize: www.dfg.de/haendel-preis
DFG press release: www.dfg.de/service/presse/pressemitteilungen/2014/pressemitteilung_nr_04/index.html

Contact for journalists:
Dr. Gerd König
Institute of Physiology and Pathophysiology
Division of Cardiovascular Physiology
Heidelberg University
Tel. +49 6221 54-4067 or +49 1525 3502007
E-mail: gerd.koenig@physiologie.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching

Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 118,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 2,200 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>