Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hansen Family Award 2011 goes to Stefan Hell

18.03.2011
The researcher at the Max Planck Institute for Biophysical Chemistry in Göttingen and the German Cancer Research Center in Heidelberg was awarded the prize for his breakthroughs in the field of microscopy. The award from the “Bayer Science and Education Foundation” is one of the most prestigious scientific prizes in Germany endowed with 75,000 Euro.

“The work of Professor Hell is an impressive testimony of the high standard of scientific research in Germany. Until recently it was unthinkable what his work has now enabled in the field of light microscopy: an insight into living cells and tissues,” said Dr. Marijn Dekkers, Head of the Executive Board of Bayer AG, at the official presentation of the Hansen Family Award 2011 on 15 March 2011 in Berlin.

With his initially very unusual ideas, the winner Prof. Dr. Stefan W. Hell changed textbook knowledge. “Professor Hell had a strong belief that he could break the diffraction limit in light microscopes discovered by Abbe. With the help of physics, he has overcome the apparently insurmountable barrier to achieve something which is very helpful in medicine and biology,” said Dr. Wolfgang Plischke, Bayer’s Head of Research, explaining the decision of the Board of Trustees.

The findings of the Göttingen physicist have revolutionized light microscopy and led to a new class of microscopes, which can look significantly deeper into the molecular scale of life. The Stimulated Emission Depletion (STED) microscopy and related methods, invented and developed by Hell, allow an up to ten times greater detailed observation in living cells and make structures visible that are much smaller than 200 nanometers. With this, one can separately observe fluorescence-tagged protein complexes of the size of 20 to 50 nanometers, structures that are about 1000 times smaller than the diameter of a human hair. With this level of resolution achieved by Hell, “the dynamics of intercellular events is possible to observe – and will probably show us something new like the light microscope did four hundred years ago,” said Prof. Dr. Ernst-Ludwig Winnacker, Secretary General of the Human Frontier Science Program Organization and Chairman of the Board of Trustees. The awardee stressed in his speech, “It gives me and my co-workers great pleasure to see that this breakthrough in the field of applied physics has found its way into biology and medicine and, in the end, will benefit all.”

Personal data:
Stefan W. Hell (born in 1962) received his doctorate in physics from the University of Heidelberg in 1990, followed by a research stay at the European Molecular Biology Laboratory in Heidelberg. From 1993 to 1996, he worked as a senior researcher at the University of Turku, Finland, where he developed the principle of STED microscopy. In 1996, he moved to the Max Planck Institute for Biophysical Chemistry in Göttingen, where he built up his current research group dedicated to sub-diffraction-resolution microscopy. He was appointed a Max Planck Director in 2002 and currently leads the Department of NanoBiophotonics at the Max Planck Institute for Biophysical Chemistry and the Department of Optical Nanoscopy at the German Cancer Research Center. He is an honorary professor of experimental physics at the University of Göttingen and adjunct professor of physics at the University of Heidelberg. Stefan Hell has received numerous national and international awards, including the Prize of the International Commission for Optics (2000), the Carl Zeiss Research Award (2002), the Innovation Award of the German Federal President (2006), the Julius Springer Award for Applied Physics (2007), the Gottfried Wilhelm Leibniz Prize (2008), the Lower Saxony State Award (2008), the Otto Hahn Prize (2009), and the Ernst Hellmut Vits Prize (2010).
Background information on the Hansen Family Award:
The Hansen Family Award honors scientists who have made pioneering research contributions in innovative fields of biology and medicine. It has been presented by the Bayer Science & Education Foundation since 2000 in memory of its endower Professor Kurt Hansen. The former Chairman of the Board of Management and the Supervisory Board of Bayer AG established the award in 1999 out of “gratitude for a fulfilled life as a natural scientist and business manager”. The foundation honors outstanding research achievements every two years with the Hansen Family Award and the alternate year with the Otto Bayer Award, each of which carries a purse of 75,000 Euro.
Contact:
Prof. Dr. Stefan W. Hell, Department of NanoBiophotonics
Max Planck Institute for Biophysical Chemistry
Phone: +49 551 / 201-2500, -2503
Fax: +49 551 / 201-2505
Email: shell@gwdg.de
Dr. Carmen Rotte, Public relations office
Max Planck Institute for Biophysical Chemistry
Phone: +49 551 / 201-1304
Fax: +49 551 / 201-1151
Email: crotte@gwdg.de
Please find the original press release including a high-resolution picture for download following the link at http://www.mpibpc.mpg.de/groups/pr/PR/2011/11_03_en/

Dr. Carmen Rotte | Max-Planck-Institut
Further information:
http://www.mpibpc.mpg.de/groups/hell/
http://www.mpibpc.mpg.de/groups/pr/PR/2011/11_03_en/

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>