Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUR 750,000 in funding for new Competence Center for HPC in the Natural Sciences at Mainz University

05.09.2014

Planned center for High Performance Computing (HPC) at the Institute of Computer Science will bring together various research projects and will provide an improved level of HPC Services / Funding provided by the Carl Zeiss Foundation

The Carl Zeiss Foundation will be providing a total of EUR 750,000 over four years to fund the Competence Center for HPC in the Natural Sciences at the Institute of Computer Science of Johannes Gutenberg University Mainz (JGU).

The proposed competence center for high performance computing (HPC), which will be headed by Professor Bertil Schmidt, General Manager of the Institute of Computer Science, and Professor André Brinkmann, Director of the JGU Center of Data Processing, will promote interdisciplinary collaborations between the natural sciences and computer science at Mainz University over the long term.

"HPC plays an important role in the science-oriented fields of our university. The use of computer simulations is one of the most important techniques, in addition to modeling and experimentation, for generating new insights in the natural sciences. HPC has thus become a factor that enhances the profile of Mainz University and has contributed decisively to the competitiveness of our research," said Professor Bertil Schmidt.

"The new competence center will add to the reputation of our university in the field of HPC – particularly in view of the planned acquisition of the new supercomputer MOGON II and the potential for collaboration with the Center for Computational Sciences Mainz (CSM). The new HPC competence center will contribute over the long term to enhancing JGU’s profile in the computer and natural sciences in the areas of simulation and the evaluation of Big Data."

Many branches of the natural sciences are currently in the process of transition to the use of data-driven concepts. The storage and analysis of the huge amounts of data routinely generated in biology, physics, meteorology, and other disciplines is increasingly causing problems for the natural sciences.

In general, the only solution for this is to develop novel, scalable algorithms and software and make use of HPC. However, the mere presence of computing resources is not sufficient unless the necessary methodological skills are also available, not only within the natural sciences but also in the fields of algorithm and program development and their implementation on modern HPC computer architectures.

With regard to translational research, the objective of the new Competence Center for HPC in the Natural Sciences is to facilitate the successful transfer of research results in computer science (i.e. design, implementation, and evaluation of scalable methods for analyzing and storing large amounts of data) so that these can be employed within the natural sciences.

"The new competence center will therefore focus on research in the areas of Big Data and HPC and at the same time specifically devote itself to interdisciplinary collaborations with the users," added Professor André Brinkmann. "To meet these goals, the nature of the center must be oriented towards both research and provision of services. Whereas the implementation, expansion, and maintenance of user-friendly programs will clearly be a service aspect, the design and optimization of the programs on modern HPC computer architectures will be associated to many interesting research problems."

In particular, the competence center will work on applications in the fields of bioinformatics, the analysis of large amounts of data from particle accelerators, the identification and localization of meteorological structures, and the geosciences. The center will be focusing on the areas of hardware accelerators, benchmarking and application optimization, data mining, visual analytics, and stochastic optimization. It is also planned to create suitable program libraries to provide for the widest possible reutilization of results.

Mainz-based researchers are worldwide leaders in the field of simulation-driven research and have demonstrated their capabilities through their achievements in the PRISMA Cluster of Excellence, the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) as well as in various collaborative research centers.

In April 2014, the German Council of Science and Humanities approved JGU's application for funding of a new supercomputer, MOGON II, thus providing a further impetus towards the consistent further development of scientific computing in Rhineland-Palatinate.

A total of EUR 8.7 million will be invested in the new supercomputer by the federal government, the state government, and JGU in the period 2015 to 2017 to ensure that the Rhineland-Palatinate researchers within the Alliance for High-Performance Computing Rhineland-Palatinate (AHRP) are provided with top-class computing power until 2019.

In addition to the needs of the researchers, the German Council of Science and Humanities also took into account the fact that the necessary methodological and operational expertise in the area of HPC is already available at Mainz University. These aspects are currently being expanded within the JGU Center of Data Processing and the Center for Computational Sciences Mainz.

Contact:
Petra Giegerich
Head of Press and Public Relations
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-22369
e-mail: presse@uni-mainz.de
www.uni-mainz.de/eng

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Competence Computational Excellence HPC Head Humanities JGU Rhineland-Palatinate natural problems profile transition

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>