Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESJET printing technology for large area active devices awarded

11.04.2019

IDTechEX Printed Electronics Europe 2019: Best Institute / Academic R&D Award granted to consortium of Fraunhofer IAP, imec und TNO/Holst Centre

ESJET printing is a new printing technology for large-scale, solution-processed displays of the future. It enables higher resolution and drop on demand printing. The Potsdam Fraunhofer Institute for Applied Polymer Research IAP, together with its project partners imec and TNO/Holst Centre, has developed this printing technology for solution-processed displays of the future.


ESJET printed active matrix 0,5‘‘ display with 10 µm pixels and a 300ppi resolution.

Fraunhofer IAP

The Fraunhofer Institute for Applied Polymer Research IAP, imec and TNO/Holst Centre have been awarded with the Best Institute / Academic R&D Award at IDTechEx Printed Electronics 2019. The award is granted for “significant contribution over the past 24 months to the understanding of the principles and accrued knowledge behind printed electronics”, the guidelines state. Dr. Richard Collins, Senior Analyst at IDTechEx, presented the award on April 10th, 2019.

Within the EU project, Hi-Response, 13 consortium members are working together to develop a highly innovative Pulsed Electro-Static Printing Technology for high resolution printing for different applications.

Within Hi-Response, the researchers of the Fraunhofer IAP, imec and TNO/Holst Centre have developed high-resolution ESJET (electrostatic jetting) printing for conductive and emissive polymers, which opens up new possibilities for various applications.

The technology has the potential to be implemented for high-resolution printing of AM OLEDs with pixel sizes below 10 µm yielding in RGB resolutions beyond 500 ppi. This technology - being scalable - enables large area printing of active devices. Furthermore, the ESJET can deposit a much wider range of viscosities from 1 to 10,000 cP, compared to 1-40 cP for inkjet printers.

The advantages of the technology of ESJET printing

“With ESJET, we are able to significantly reduce pixel sizes for printed AM OLEDs”, Dr. Christine Boeffel, project manager at the Fraunhofer IAP says. “One of the remarkable things about the technology is that even at pitches of 25 µm, pixel sizes down to 10 µm are printable. For our demonstrator we printed 62967 single 10 µm wide dots to make a working display with a 300 ppi resolution.”

Imec and TNO/Holst Centre developed AM OLED backplanes and provided them to the Fraunhofer IAP for processing of the OLED front plane. High-resolution ESJET printing was implemented for the deposition of the PEDOT:PSS hole injection layer consisting of the print of 62967 single 10 µm wide dots on the 0.5 inch wide active matrix backplane. The subsequent layer of the emitting material was processed by spin coating followed by thermal evaporation of the transparent electrode.

“It is a great milestone to print OLED materials in such small dimensions. Improving in the printing resolution opens new possibilities for solution processed OLED display”, Dr. Tung-Huei Ke, senior researcher at imec says.

“We have reached an important goal getting the technology of ESJET printing this far. We are convinced that pixel sizes can be reduced even further below the mark of 10 µm. We plan to print OLED materials for RGB display applications at 300 ppi in future projects”, Dr. Manuel Gensler, researcher for ESJET printing at the Fraunhofer IAP says.

“With the display industry searching for new and innovative ways to increase display resolution as well as to include new user interfaces into the full display area, high-resolution printing technology is a key enabler to realize these goals by printing OLED materials as well as other functional materials at high resolution”, Dr. Auke Jisk Kronemeijer, GEN1 TFT Pilot Line Manager at TNO/Holst Centre says.

Weitere Informationen:

https://www.iap.fraunhofer.de/en/press_releases/2019/esjet-printing-award.html

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>