Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics made of plastic

21.12.2011
The "Deutscher Zukunftspreis 2011" was won by a team comprising existing and former Fraunhofer researchers. Professor Karl Leo, Dr. Jan Blochwitz-Nimoth and Dr. Martin Pfeiffer were honored for their pioneering achievements in the field of organic electronics.

When the concept was first proposed, it was dismissed as being unrealizable: “It’ll never work,” commented one expert assessor of an application for research funding. Today, 15 years later, the physicist Professor Karl Leo and two of his colleagues have been presented with the "Deutscher Zukunftspreis", one of Germany’s most prestigious research awards, for what was once a highly controversial idea. Leo, director of the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden, has devoted most of his career to organic electronics. Until now, most electronic components have been made of inorganic silicon. The brittle material is a good semiconductor, but its manufacture requires a highly sophisticated process. It involves growing large crystals at high temperatures and then cutting them into thin slices known as wafers.

The more elegant solution is to use an organic material, a type of dye commonly used in the production of road signs. Such materials have the advantage that they can be applied as a coating on flexible films and other substrates. This gives rise to endless new possibilities, such as displays that can be rolled up and carried in a vest pocket or switchable window panes that light up at night to illuminate rooms while hardly consuming any electricity. On the other hand, organic dyes are poor electrical conductors. But this is where the once-mocked ingenious idea comes into play: their less-than-satisfactory conductivity can be increased by doping, i.e. adding a small amount of another chemical substance. After years of experiments, the researchers have succeeded in creating materials with an electrical conductivity a million and more times greater than the original dyes, with a doping ratio of no more than one percent.

The "Deutscher Zukunftspreis 2011", endowed with 250,000 euros, has been awarded by the President of the Federal Republic of Germany every year since 1997. It honors outstanding innovations that have made the transition from the research laboratory to industrial practice, thus helping to create jobs. Fraunhofer is a frequent winner of this prize, no doubt because it operates precisely at this interface between the world of research and the commercial market. This time, the jury chose to honor organic electronics, which Leo describes as a technology “that will revolutionize our lives”.

The ultrathin semiconductor coatings have already made their way into mass production. They are equally versatile as the silicon chips that preceded them, for instance converting electrical energy into light just as easily as they convert sunlight into electricity. Novaled AG has adopted the first approach, using the technology to produce materials for displays and lamps, while Heliatek GmbH has chosen to focus on photovoltaics. Both of these companies are spinoffs created by former members of Professor Leo’s research team. By now they employ a total of nearly 200 people, and work closely together with other Dresden-based companies in a technology network. This year’s Zukunftspreis is shared by the founders of these two spinoffs, Jan Blochwitz-Nimoth (Novaled) and Martin Pfeiffer (Heliatek), and their mentor Professor Leo. Novaled AG is slightly further ahead in terms of marketing: the company is already mass-producing materials for cellphone displays. In two or three years’ time, it intends to start supplying materials for ultraflat TV screens that display true-to-life colors and consume a minimum of energy. “OLED displays combine the best qualities of LED and plasma screens, the two technologies currently available,” says Blochwitz-Nimroth. They are more energy-efficient than plasma TVs and deliver sharper images than LED technology, because they don’t need backlighting.

Solar cells made of organic materials have not yet reached the mass market. Heliatek GmbH expects to start production sometime next year. The company’s latest prototypes have an efficiency of ten percent, which is not yet high enough to compete with conventional silicon cells. “But in the longer term we will reach efficiencies approaching 20 percent”, Professor Leo states. Moreover, organic cells have other advantages compared with silicon technology, foremost among them a simpler – and therefore cheaper – manufacturing process.

The method employed by Karl Leo and his prize-winning former colleagues involves depositing microscopically thin layers of the organic material on a substrate. These coatings have a thickness of no more than one fifth of a micrometer – one thousand times thinner than in conventional solar cells. Only about a gram of semiconductor material is needed to coat a surface area of one square meter – in a process that takes place at room temperature, not at the 1,000 or so degrees Celsius required to produce inorganic cells.

This not only saves energy but also allows PET films to be used as the substrate, instead of the heat-resistant glass that was previously the only option. PET is the same plastic used to make bottles for soft drinks. It is cheap, light and flexible. The prize-winners have developed a continuous process based on roll-to-roll technology that enables the solar cells to be manufactured cheaply in large numbers. The resulting lightweight modules can be installed on roofs too weak to support the weight of standard photovoltaic panels.

Before making its final choice, the jury had shortlisted three projects as potential winners of the "Deutscher Zukunftspreis". A second project rooted in Fraunhofer research was among this year’s finalists, competing alongside the organic electronics team. These researchers have developed an advanced photovoltaic technology, known as “concentrated photovoltaics (CPV)”, which consists of very-high-efficiency solar cells and sun-tracking concentrator modules. The nominated team comprised Andreas W. Bett, deputy director of the Fraunhofer Institute for Solar Energy Systems ISE, Hansjörg Lerchenmüller from Soitec Solar and Klaus-Dieter Rasch from AZUR SPACE Solar Power.

It was thus against such strong competitors that the organic electronics team led by Professor Leo won the "Deutscher Zukunftspreis 2011". German President Christian Wulff presented the award to Professor Karl Leo, Dr. Jan Blochwitz-Nimoth and Dr. Martin Pfeiffer in mid-December.

Prof. Karl Leo | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/electronics-made-of-plastic.html

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>