Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continued funding for research on cell death

08.11.2016

3.5 million euros for tri-national research unit on the modulation of programmed cell death

Programmed cell death is a basic pre-requisite for life, and its underlying mechanisms are immensely interesting not only for cancer research. The tri-national research unit FOR2036, whose speaker is Professor Thomas Brunner (professor of biochemical pharmacology) of the University of Konstanz, includes scientists from Germany, Switzerland and Austria.

Since 2014 they have studied how the programmed cell death, the so-called apoptosis, is being regulated. That the research unit is on the right track has now been confirmed: the German Research Foundation (DFG) and the Austrian Science Fund (FWF) will continue to fund the research unit, consisting of nine sub-projects, with 3.4 million euros over the next three years.

The complex functional network of the so-called Bcl-2 family proteins plays a central role in modulating the programmed cell death. The name of the research unit "New insights into Bcl-2 family interactions: from biophysics to function" indicates that the teams deal with the question on different levels.

The research spectrum ranges from in vitro approaches of biophysics and biochemistry to cell biological or system biological processes, as well as clinical methods and approaches where the cells of tumour patients are examined on their characteristic pattern of Bcl-2 proteins and cell death. "The considerable resources in this consortium allow us to initiate projects quickly and flexibly", says Thomas Brunner about the synergies in the joint research project.

Why programmed cell death?
Our immune system shows us how important it is to rid of unwanted cells through apoptosis: after recovering from an infection, programmed cell death will adjust the number of granulocytes or lymphocytes to a normal level. This cell death induction seems to no longer function in leukemia cells. Therefore one of the most central questions in tumour research is how to influence the network of the Bcl-2 family. Its "family members" can prevent or promote cell death - the corresponding interaction is decisive. Cell death is triggered by certain molecules (called Bax and Bak) that form pores in the mitochondrial outer membrane of the cell, which in turn initiates apoptosis induction. One of the goals in tumour therapy is to positively influence the pore-forming effect.

Basic research implemented in clinical practice
So-called BH3-molecules can constrain Bcl-2-homologues that are conducive for survival and are found in larger numbers in many tumour cells. A new class of molecules developed by research is able to mimic BH3-molecules ("BH3 mimetics"). They, too, promote the formation of pores and thus cell death. "This year this new class of substances was approved by the US-American Food and Drug Administration (FDA) for the treatment of certain types of leukemia. This is one of the examples where basic research gained a foothold in clinical practice very quickly. One of our colleagues, PD Dr. Philipp Jost at the hospital "Klinikum rechts der Isar" of the Technical University in Munich will be involved in these clinical studies", explains Thomas Brunner.

Pores made visible for the first time
Another highlight for the research unit is that Professor Ana García-Sáez (University of Tübingen), using high-resolution microscopy, now succeeded in visualizing pores, which had been postulated before only on the basis of calculations and biochemical tests. The bio-physical research methods are very reductionistic and make it possible to study these proteins nearly on a physical level. This was an extremely important approach for various members of this research unit", explains Thomas Brunner.

University of Konstanz: mathematical models make predictions possible
Team members at the University of Konstanz work on mathematically tracking the complex pattern of possible interactions. Professor Tancred Frickey and doctoral student Annika Hantusch, in cooperation with Thomas Brunner and Professor Markus Morrison from Tübingen, develop model systems that can simulate the interactions of the family members. This will enable the researchers to predict how a cell with a certain pattern of Bcl-2-homologs will react to certain chemotherapeutic substances. "We have made huge progress in developing the mathematical model, and we have also collected data that is available in the expert literature in one online data base. These interactions can directly be searched for on the corresponding website of the University of Konstanz." In the future, mathematical analysis might predict whether a patient will react positively to a certain treatment without actually having to burden the patient with drugs that will probably be ineffective.

Facts:
The research unit "New insights into Bcl-2 family interactions: from biophysics to function" (FOR 2036) was funded by the German Research Foundation (DFG), the Austrian Science Fund (FWF) and the Swiss National Science Foundation (SNF) from 2013–2016. For the second funding period 2017–2020 the DFG and the FWF will support the consortium with a total of 3.5 euros. Professor Thomas Brunner, chair of biochemical pharmacology at the University of Konstanz, is the speaker of the Konstanz-based research unit.
Institutions and members:
University of Konstanz (Germany): Professor Thomas Brunner
University of Freiburg (Germany): Dr. Miriam Erlacher, Professor Christoph Borner, Professor Georg Häcker
University of Tübingen (Germany): Professor Ana García Sáez
Technical University of Munich (Germany): PD Dr. Philipp Jost
University of Stuttgart (Germany): Professor Markus Morrison (-Rehm)
University hospitals Salzburg (Austria): PD Dr. Alexander Egle
Innsbruck Medical University (Austria): Professor Andreas Villunger
University of Bern (Switzerland): Professor Thomas Kaufmann (associated)

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Brunner-Uni-KN-2016.jpg
Professor Thomas Brunner

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/cytcGFP_release_highlig...
Microscopic evidence of cytochrome c-release during apoptosis. On the left a group of liver cancer cells that still hold cytochrome c (green) in the mitochondria; on the right the same cells 5 minutes later with a cell (arrow) which already has spilled its cytochrome c into the cytoplasm and will now die.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Bcl-2-Ome.png
The web-based data base "Bcl-2-ome" on Bcl-2-family-interactions (for2036.uni-konstanz.de/Bcl2Ome/index.php)

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-konstanz.de

Further reports about: DFG apoptosis cell death pores programmed cell death proteins tumour

More articles from Awards Funding:

nachricht Ultrasound Connects
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Improving the understanding of death receptor functions in cells
07.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>